An experiment was conducted to determine the effects of soy isoflavone daidzein on carcass characteristics, fat deposition, meat quality, and blood metabolites in finishing steers. Fourteen crossbred steers were used in a 120-d finishing study. These steers were stratified by weight into groups and randomly allotted by group to one of two dietary treatments: (1) control and (2) daidzein (500 mg/kg concentrate). The steers were fed a 90% concentrate diet. Supplemental daidzein did not affect slaughter weight, hot carcass weight, and dressing percentage, but tended to reduce fat proportion (not including intramuscular fat) in carcass and backfat thickness of steers. The carcass bone proportion was greater in steers fed daidzein diets than those fed control diets. Daidzein supplementation reduced pH at 24 h after slaughtered and moisture content and increased isocitrate dehydrogenase activity, fat content (16.28% and 7.94%), marbling score (5.29 and 3.36), redness (a*), and chroma (C*) values in longissimus muscle relative to control treatment. The concentrations of blood metabolites including glucose, blood urea nitrogen, triglyceride, total cholesterol, non-esterified fatty acid, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were all lower in steers fed daidzein diets than those fed control diets. Current results suggest that supplemental daidzein can affect lipid metabolism, increase intramuscular fat content and marbling score, and improve meat quality in finishing steers. Daidzein should be a promising feed additive for production of high-quality beef meat.
Heat stress is one of the most challenging environmental stressors that influence poultry production worldwide, and causes large economic losses annually (Lara & Rostagno, 2013). High ambient temperature leads to diverse deleterious impacts on physiological, immunological, and performance traits in poultry (
To understand the effects of niacin on the ruminal microbial ecology of cattle under high-concentrate diet condition, Illumina MiSeq sequencing technology was used. Three cattle with rumen cannula were used in a 3 × 3 Latin-square design trial. Three diets were fed to these cattle during 3 periods for 3 days, respectively: high-forage diet (HF; forage-to-concentrate ratio = 80:20), high-concentrate diet (HC; forage-to-concentrate ratio = 20:80), and HC supplemented with 800 mg/kg niacin (HCN). Ruminal pH was measured before feeding and every 2 h after initiating feeding. Ruminal fluid was sampled at the end of each period for microbial DNA extraction. Overall, our findings revealed that subacute ruminal acidosis (SARA) was induced and the α-diversity of ruminal bacterial community decreased in the cattle of HC group. Adding niacin in HC could relieve the symptoms of SARA in the cattle but the ruminal pH value and the Shannon index of ruminal bacterial community of HCN group were still lower than those of HF group. Whatever the diet was, the ruminal bacterial community of cattle was dominated by Bacteroidetes, Firmicutes and Proteobacteria. High-concentrate diet significantly increased the abundance of Prevotella, and decreased the abundance of Paraprevotella, Sporobacter, Ruminococcus and Treponema than HF. Compared with HC, HCN had a trend to decrease the percentage of Prevotella, and to increase the abundance of Succiniclasticum, Acetivibrio and Treponema. Increasing concentrate ratio could decrease ruminal pH value, and change the ruminal microbial composition. Adding niacin in HC could increase the ruminal pH value, alter the ruminal microbial composition.
Purpose
The purpose of this study is to investigate the mechanism of shared leadership on team members’ innovative behavior.
Design/methodology/approach
Paired questionnaires were collected from 89 scientific research teams in the Beijing-Tianjin-Hebei region of China at two-time points with a time lag of 4 months. Then multilevel structural equation model method was applied to analyze the multiple mediating effects.
Findings
This study finds that: the form of shared leadership in scientific research teams of universities; shared leadership has a positive impact on team members’ innovative behavior; there are multiple mediations in the relationship including synchronization and sequence of creative self-efficacy and achievement motivation.
Originality/value
According to the “stimulus-organism-response” model, this paper has constructed a multi-level theoretical model that shared leadership influences individual innovation behavior and reveals the “black box” from the perspective of psychological mechanism. It not only verifies that “can-do” shapes “willing to do” but also makes up for the gap of an empirical test of the effectiveness of shared leadership in scientific research teams of universities. Besides, the formal scale of shared leadership in the Chinese situation is revised, which can provide a reference for future empirical research on shared leadership. The research conclusions provide new ideas for improving the management of scientific research teams in universities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.