Overproduction of reactive oxygen species in aging tissues has been implicated in the pathogenesis of aging-associated cardiovascular dysfunction. Oxidant-induced DNA-damage activates the poly(ADP-ribose) polymerase (PARP) pathway, leading to tissue injury. In this study we investigated the acute effects of the PARP inhibitor INO-1001 on aging-associated cardiac and endothelial dysfunction. Using a pressure-volume conductance catheter, left ventricular pressure-volume analysis of young and aging rats was performed before and after a single injection of INO-1001. Endothelium-dependent and -independent vasorelaxation of isolated aortic rings were investigated by using acetylcholine and sodium nitroprusside. Aging animals showed a marked reduction of myocardial contractility and endothelium-dependent relaxant responsiveness of aortic rings. Single dose INO-1001-treatment resulted in acute improvement in their cardiac and endothelial function. Immunohistochemistry for nitrotyrosine and poly(ADP-ribose) confirmed enhanced nitro-oxidative stress and PARP-activation in aging animals. Acute treatment with INO-1001 decreased PARP-activation, but did not affect nitrotyrosine-immunoreactivity. Our results demonstrate that the aging-associated chronic cardiovascular dysfunction can be improved, at least, short term, by a single treatment course with a PARP-inhibitor, supporting the role of the nitro-oxidative stress -- PARP -- pathway in the age-related functional decline of the cardiovascular system. Pharmacological inhibition of PARP may represent a novel therapeutic utility to improve aging-associated cardiovascular dysfunction.
Oxidative stress is known to be involved in many human pathological processes. Although there are numerous methods available for the assessment of oxidative stress, most of them are still not easily applicable in a routine clinical laboratory due to the complex methodology and/or lack of automation. In research into human oxidative stress, the simplification and automation of techniques represent a key issue from a laboratory point of view at present. In 1996 a novel oxidative stress biomarker, referred to as advanced oxidation protein products (AOPP), was detected in the plasma of chronic uremic patients. Here we describe in detail an automated version of the originally published microplate-based technique that we adapted for a Cobas Mira Plus clinical chemistry analyzer. AOPP reference values were measured in plasma samples from 266 apparently healthy volunteers (university students; 81 male and 185 female subjects) with a mean age of 21.3 years (range 18-33). Over a period of 18 months we determined AOPP concentrations in more than 300 patients in our department. Our experiences appear to demonstrate that this technique is especially suitable for monitoring oxidative stress in critically ill patients (sepsis, reperfusion injury, heart failure) even at daily intervals, since AOPP exhibited rapid responses in both directions. We believe that the well-established relationship between AOPP response and induced damage makes this simple, fast and inexpensive automated technique applicable in daily routine laboratory practice for assessing and monitoring oxidative stress in critically ill or other patients.
In 1996 a novel oxidative stress biomarker, referred to as advanced oxidation protein products (AOPP) was detected in the plasma of chronic uremic patients. The aim of the present studies was to find out that which plasma fraction(s) is responsible for AOPP reactivity. Thermal treatment of pooled samples of human citrate-plasma or EDTA-plasma at 50 degrees C resulted in a rapid and parallel loss of fibrinogen concentration and AOPP reactivity. On the basis of time course and t1/2 values following thermal treatment, AOPP was indistinguishable from fibrinogen. There was a statistically significant (p < 0.0001) correlation between levels of blood plasma fibrinogen and AOPP in patients (n = 61) with various peripheral vascular or cardiovascular diseases. There was also a significant (p < 0.0001) relationship between plasma levels of fibrinogen and molar AOPP/fibrinogen ratio indicating that higher fibrinogen concentrations were associated with more oxidatively transformed groups on the molecule. Results of the present studies suggest that post-translationally modified fibrinogen is a key molecule responsible for human plasma AOPP reactivity. It remains to be elucidated what is the pathophysiological significance of the post-translationally modified fibrinogen in the inflammation-associated events of atherosclerosis, in platelet aggregation, and as a cardiovascular risk biomarker.
Poly(ADP-ribose) polymerase (PARP) activation plays a key role in free radical-induced injury in the context of systemic inflammation and ischemia/reperfusion. In the present preclinical study, we investigated the effects of INO-1001, a novel PARP inhibitor, on cardiac and pulmonary function during reperfusion in an experimental model of cardioplegic arrest and extracorporal circulation. Twelve anesthetized dogs underwent hypothermic cardiopulmonary bypass. After 60 min of hypothermic cardiac arrest, reperfusion was started after application of either saline vehicle (control, n = 6), or INO-1001 (1 mg/kg), a potent PARP inhibitor (n = 6). Biventricular hemodynamic variables were measured by combined pressure-volume-conductance catheters. Coronary and pulmonary blood flow and vasodilative responses to acetylcholine and sodium nitroprusside as well as pulmonary gas exchange were also determined. The administration of INO-1001 led to a significantly better recovery of left and right ventricular systolic function (P < 0.05) after 60 min of reperfusion. Coronary blood flow was also significantly higher in the INO-1001 group (P < 0.05). Although the vasodilative response to sodium nitroprusside was similar in both groups, acetylcholine resulted in a significantly greater increase in coronary and pulmonary blood flow in the INO-1001 group (P < 0.05). Pulmonary function in terms of alveolar arterial oxygen difference was better preserved in the INO-1001-treated group (P < 0.05). Thus, PARP inhibition improves the recovery of myocardial and endothelial function after hypothermic cardiac arrest and reduces pulmonary injury associated with extracorporal circulation.
Background: High circulating concentrations of N-terminal fragments of A-and B-type natriuretic peptides (NT-proANP and NT-proBNP) identify patients with impaired cardiac function. ProANP-derived peptides are particularly sensitive to increased preload of the heart and proBNP-derived peptides to increased afterload; therefore, combining the information from the ANP and BNP systems into a single analyte could produce an assay with increased diagnostic and prognostic power. Methods: We prepared a hybrid peptide containing peptide sequences from both NT-proBNP and NTproANP (referred to as NT-proXNP) by recombinant techniques and used it to develop a RIA combining weighed concentrations of NT-proANP and NT-proBNP into a new virtual analyte, NT-proXNP. We used the novel method to measure the circulating concentrations in healthy persons and in patients with cardiac disorders. We also characterized the assay by HPLC analysis of the immunoreactive molecular forms in human plasma and serum.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.