Sorghum is the fifth most produced cereal in the world and is a source of nutrients and bioactive compounds for the human diet. We summarize the recent findings concerning the nutrients and bioactive compounds of sorghum and its potential impact on human health, analyzing the limitations and positive points of the studies and proposing directions for future research. Sorghum is basically composed of starch, which is more slowly digested than that of other cereals, has low digestibility proteins and unsaturated lipids, and is a source of some minerals and vitamins. Furthermore, most sorghum varieties are rich in phenolic compounds, especially 3-deoxyanthocyanidins and tannins. The results obtained in vitro and in animals have shown that phenolics compounds and fat soluble compounds (polycosanols) isolated from sorghum benefit the gut microbiota and parameters related to obesity, oxidative stress, inflammation, diabetes, dyslipidemia, cancer, and hypertension. The effects of whole sorghum and its fractions on human health need to be evaluated. In conclusion, sorghum is a source of nutrients and bioactive compounds, especially 3-deoxyanthocyanidins, tannins, and polycosanols, which beneficially modulate, in vitro and in animals, parameters related to noncommunicable diseases. Studies should be conducted to evaluate the effects of different processing on protein and starch digestibility of sorghum as well as on the profile and bioavailability of its bioactive compounds, especially 3-deoxyanthocyanidins and tannins. Furthermore, the benefits resulting from the interaction of bioactive compounds in sorghum and human microbiota should be studied.
The sensory acceptance and the content of bioactive compounds of whole-sorghum and whole-wheat breakfast cereals were compared. Sensory acceptance was assessed using the Food Action RatingScale. 3-Deoxyanthocyanidins, flavones and flavanones were determined by high-performance liquid chromatography (HPLC) with diode array detection, and vitamin E by HPLC with fluorescence detection. Total phenolics and antioxidant activity were determined by spectrophotometry. The sorghum breakfast cereal had better sensory acceptance (70.6%) than wheat breakfast cereal (41.18%). Sorghum had higher 3-deoxyanthocyanidin content (100% higher), total phenolic compounds (98.2% higher) and antioxidant activity (87.9% higher) than wheat breakfast cereal. Flavones and flavanones were not detected in both breakfast cereals. Total vitamin E content was 78.6% higher in wheat than in sorghum breakfast cereal. Thus, consumption of whole sorghum breakfast cereal should be encouraged, since it had good sensory acceptance and is a source of bioactive compounds that can promote benefits to human health.
Available onlineA B S T R A C T Polyphenols, especially anthocyanins, have been considered promising for the prevention of nonalcoholic fatty liver disease (NAFLD). This study investigated whether açai (Euterpe oleracea Mart.), a source of anthocyanins and recognized as one of the new "superfruits", could alleviate high-fat diet (HFD)-induced NAFLD in mice. In HFD mice, aqueous açai extract (AAE) administration (3 g/kg) for six weeks improved insulin resistance index and increased adiponectin mRNA expression in adipose tissue and serum levels. Furthermore, AAE decreased the total liver triacylglycerol content and attenuated HFD-induced hepatic steatosis. This reduced hepatic lipid content was associated with AAE-mediated up-regulation of genes involved in adiponectin signaling, including adiponectin receptor 2, PPAR-α, and its target gene, carnitine palmitoyltransferase. Thus, dietary açai can protect liver from steatosis through its enhancement of adiponectin levels, improvement of insulin sensitivity, and increase in PPAR-α-mediated fatty acid oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.