Locomotion in mammals relies on a central pattern-generating circuitry of spinal interneurons established during development that coordinates limb movement1. These networks produce left–right alternation of limbs as well as coordinated activation of flexor and extensor muscles2. Here we show that a premature stop codon in the DMRT3 gene has a major effect on the pattern of locomotion in horses. The mutation is permissive for the ability to perform alternate gaits and has a favourable effect on harness racing performance. Examination of wild-type and Dmrt3-null mice demonstrates that Dmrt3 is expressed in the dI6 subdivision of spinal cord neurons, takes part in neuronal specification within this subdivision, and is critical for the normal development of a coordinated locomotor network controlling limb movements. Our discovery positions Dmrt3 in a pivotal role for configuring the spinal circuits controlling stride in vertebrates. The DMRT3 mutation has had a major effect on the diversification of the domestic horse, as the altered gait characteristics of a number of breeds apparently require this mutation.
During locomotion, 3 types of rotations are evident in the thoracolumbar vertebrae. Regional differences are observed in the shape and timing of the rotations. These differences are related to actions of the limbs. The method described here for direct measurement of vertebral column motion provides insights into the complex movements of the thoracolumbar portion of the vertebral column in trotting horses. Information on normal kinematics is a prerequisite for a better understanding of abnormal function of the vertebral column in horses.
This direct measurement method provides 3-dimensional kinematic data for flexion-extension, lateral bending, and axial rotation of the thoracolumbar portion of the vertebral column of horses walking on a treadmill. Regional differences were observed in the magnitude and pattern of the rotations. Understanding of the normal kinematics of the vertebral column in healthy horses is a prerequisite for a better understanding of abnormal function.
SummaryReasons for performing studyLungeing is commonly used as part of standard lameness examinations in horses. Knowledge of how lungeing influences motion symmetry in sound horses is needed.ObjectivesThe aim of this study was to objectively evaluate the symmetry of vertical head and pelvic motion during lungeing in a large number of horses with symmetric motion during straight line evaluation.Study designCross‐sectional prospective study.MethodsA pool of 201 riding horses, all functioning well and considered sound by their owners, were evaluated in trot on a straight line and during lungeing to the left and right. From this pool, horses with symmetric vertical head and pelvic movement during the straight line trot (n = 94) were retained for analysis. Vertical head and pelvic movements were measured with body mounted uniaxial accelerometers. Differences between vertical maximum and minimum head (HDmax, HDmin) and pelvic (PDmax, PDmin) heights between left and right forelimb and hindlimb stances were compared between straight line trot and lungeing in either direction.ResultsVertical head and pelvic movements during lungeing were more asymmetric than during trot on a straight line. Common asymmetric patterns seen in the head were more upward movement during push‐off of the outside forelimb and less downward movement during impact of the inside limb. Common asymmetric patterns seen in the pelvis were less upward movement during push‐off of the outside hindlimb and less downward movement of the pelvis during impact of the inside hindlimb. Asymmetric patterns in one lunge direction were frequently not the same as in the opposite direction.ConclusionsLungeing induces systematic asymmetries in vertical head and pelvic motion patterns in horses that may not be the same in both directions. These asymmetries may mask or mimic fore‐ or hindlimb lameness.
Summary There is a high prevalence of lameness among Standardbred trotters, most commonly caused by noninfectious joint diseases, mainly related to training and competition. In this context, impact‐related shock waves transmitted through the skeleton and joints have been proposed to be one important factor in the development of osteoarthritis. The aim of the present study was to investigate the characteristic pattern of the events immediately following first contact, with a focus on the in vivo transmission of impact shock waves in the distal forelimb. Two horses were trotted by hand over a force plate. Recordings of 3‐D kinematics of the distal forelimb were carried out by use of a 240 Hz video system. Tri‐axial accelerometer data were collected from a bone‐mounted accelerometer on the midlateral side of the third metacarpal bone (McIII) and from another accelerometer attached to the lateral side of the hoof. Force plate and accelerometer data were sampled at 4.8 kHz using a 16‐bit A/D‐converter, synchronised with the kinematic data. The results indicate that the time lapse of the horizontal retardation of the hoof is an important factor in the attenuation of the impact. A shorter period of hoof braking showed higher amplitudes in the longitudinal retardation of McIII and a more rapid oscillation. This makes all parameters that affect the horizontal hoof braking potentially important to the orthopaedic health of the horse.
Summary Reasons for performing study: Little is known in quantitative terms about the influence of different head‐neck positions (HNPs) on the loading pattern of the locomotor apparatus. Therefore it is difficult to predict whether a specific riding technique is beneficial for the horse or if it may increase the risk for injury. Objective: To improve the understanding of forelimb‐hindlimb balance and its underlying temporal changes in relation to different head and neck positions. Methods: Vertical ground reaction force and time parameters of each limb were measured in 7 high level dressage horses while being ridden at walk and trot on an instrumented treadmill in 6 predetermined HNPs: HNP1 ‐ free, unrestrained with loose reins; HNP2 ‐ neck raised, bridge of the nose in front of the vertical; HNP3 ‐ neck raised, bridge of the nose behind the vertical; HNP4 ‐ neck lowered and flexed, bridge of the nose considerably behind the vertical; HNP5 ‐ neck extremely elevated and bridge of the nose considerably in front of the vertical; HNP6 ‐ neck and head extended forward and downward. Positions were judged by a qualified dressage judge. HNPs were assessed by comparing the data to a velocity‐matched reference HNP (HNP2). Differences were tested using paired t test or Wilcoxon signed rank test (P<0.05). Results: At the walk, stride duration and overreach distance increased in HNP1, but decreased in HNP3 and HNP5. Stride impulse was shifted to the forehand in HNP1 and HNP6, but shifted to the hindquarters in HNP5. At the trot, stride duration increased in HNP4 and HNP5. Overreach distance was shorter in HNP4. Stride impulse shifted to the hindquarters in HNP5. In HNP1 peak forces decreased in the forelimbs; in HNP5 peak forces increased in fore‐ and hindlimbs. Conclusions: HNP5 had the biggest impact on limb timing and load distribution and behaved inversely to HNP1 and HNP6. Shortening of forelimb stance duration in HNP5 increased peak forces although the percentage of stride impulse carried by the forelimbs decreased. Potential relevance: An extremely high HNP affects functionality much more than an extremely low neck.
Lungeing is an important part of lameness examinations, since the circular path enforced during lungeing is thought to accentuate low grade lameness. However, during lungeing the movement of sound horses becomes naturally asymmetric, which may mimic lameness. Also, compensatory movements in the opposite half of the body may mimic lameness. The aim of this study was to objectively study the presence of circle-dependent and compensatory movement asymmetries in horses with induced lameness. Ten horses were trotted in a straight line and lunged in both directions on a hard surface. Lameness was induced (reversible hoof pressure) in each limb, one at a time, in random order. Vertical head and pelvic movements were measured with body-mounted, uni-axial accelerometers. Differences between maximum and minimum height observed during/after left and right stance phases for the head (HDmax, HDmin) and pelvis (PDmax, PDmin) were measured. Mixed models were constructed to study the effect of lungeing direction and induction, and to quantify secondary compensatory asymmetry mechanisms in the forelimbs and hind limbs. Head and pelvic movement symmetries were affected by lungeing. Minimum pelvic height difference (PDmin) changed markedly, increasing significantly during lungeing, giving the impression of inner hind limb lameness. Primary hind limb lameness induced compensatory head movement, which mimicked an ipsilateral forelimb lameness of almost equal magnitude to the primary hind limb lameness. This could contribute to difficulty in correctly detecting hind limb lameness. Induced forelimb lameness caused both a compensatory contralateral (change in PDmax) and an ipsilateral (change in PDmin) hind limb asymmetry, potentially mimicking hind limb lameness, but of smaller magnitude. Both circle-dependent and compensatory movement mechanisms must be taken into account when evaluating lameness.
Head and neck positions influence significantly the kinematics of the ridden horse. It is important for riders and trainers to be aware of these effects in dressage training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers