Over 100 trigonometric parallaxes and proper motions for masers associated with young, high-mass stars have been measured with the Bar and Spiral Structure Legacy Survey, a Very Long Basline Array key science project, the European VLBI Network, and the Japanese VERA project. These measurements provide strong evidence for the existence of spiral arms in the Milky Way, accurately locating many arm segments and yielding spiral pitch angles ranging from about 7 • to 20 • . The widths of spiral arms increase with distance from the Galactic center. Fitting axially symmetric models of the Milky Way with the 3-dimensional position and velocity information and conservative priors for the solar and average source peculiar motions, we estimate the distance to the Galactic center, R 0 , to be 8.34 ± 0.16 kpc, a circular rotation speed at the Sun, Θ 0 , to be 240 ± 8 km s −1 , and a rotation curve that is nearly flat (i.e., a slope of −0.2 ± 0.4 km s −1 kpc −1 )
We are using the Very Long Baseline Array and the Japanese VLBI Exploration of Radio Astronomy project to measure trigonometric parallaxes and proper motions of masers found in high-mass star-forming regions across the Milky Way. Early results from 18 sources locate several spiral arms. The Perseus spiral arm has a pitch angle of 16 • ± 3 • , which favors four rather than two spiral arms for the Galaxy. Combining positions, distances, proper motions, and radial velocities yields complete 3-dimensional kinematic information. We find that star forming regions on average are orbiting the Galaxy ≈ 15 km s −1 slower than expected for circular orbits. By fitting the measurements to a model of the Galaxy, we estimate the distance to the Galactic center R 0 = 8.4 ± 0.6 kpc and a circular rotation speed Θ 0 = 254 ± 16 km s −1 . The ratio Θ 0 /R 0 can be determined to higher accuracy than either parameter individually, and we find it -2to be 30.3 ± 0.9 km s −1 kpc −1 , in good agreement with the angular rotation rate determined from the proper motion of Sgr A*. The data favor a rotation curve for the Galaxy that is nearly flat or slightly rising with Galactocentric distance. Kinematic distances are generally too large, sometimes by factors greater than two; they can be brought into better agreement with the trigonometric parallaxes by increasing Θ 0 /R 0 from the IAU recommended value of 25.9 km s −1 kpc −1 to a value near 30 km s −1 kpc −1 . We offer a "revised" prescription for calculating kinematic distances and their uncertainties, as well as a new approach for defining Galactic coordinates. Finally, our estimates of Θ 0 and Θ 0 /R 0 , when coupled with direct estimates of R 0 , provide evidence that the rotation curve of the Milky Way is similar to that of the Andromeda galaxy, suggesting that the dark matter halos of these two dominant Local Group galaxy are comparably massive.
We compile and analyze approximately 200 trigonometric parallaxes and proper motions of molecular masers associated with very young high-mass stars. Most of the measurements come from the BeSSeL Survey using the VLBA and
Solar-mass stars form via disk-mediated accretion. Recent findings indicate that this process is probably episodic in the form of accretion bursts 1 , possibly caused by disk fragmentation 2-4 . Although it cannot be ruled out that high-mass young stellar objects arise from the coalescence of their low-mass brethren 5 , the latest results suggest that they more likely form via disks 6-9 . It follows that disk-mediated accretion bursts should occur 10,11 . Here we report on the discovery of the first disk-mediated accretion burst from a roughly twenty-solar-mass high-mass young stellar object 12 . Our near-infrared images show the brightening of the central source and its outflow cavities. Near-infrared spectroscopy reveals emission lines typical for accretion bursts in low-mass protostars, but orders of magnitude more luminous. Moreover, the released energy and the inferred mass-accretion rate are also orders of magnitude larger. Our results identify disk-accretion as the common mechanism of star formation across the entire stellar mass spectrum.S255IR NIRS 3 (aka S255IR-SMA1) is a well-studied ∼20 M (L bol ∼ 2.4×10 4 L ) high-mass young stellar object (HMYSO) 13,14 in the S255IR massive star-forming region 13 , located at a distance of ∼1.8 kpc 15 . It exhibits a disk-like rotating structure 13 , very likely an accretion disk, viewed nearly edge-on 16 (inclination angle ∼80 • ).A molecular outflow has been detected 13 (blueshifted lobe position angle (P.A.) ∼247 • ) perpendicular to the disk. Two bipolar lobes (cavities), cleared by the outflow, are illuminated by the central source and show up as reflection nebulae towards the southwest (blueshifted lobe) and northeast (redshifted lobe, see Fig.
We are conducting a large program with the NRAO Very Long Baseline Array (VLBA) to measure trigonometric parallaxes of massive star-forming regions across the Milky Way. Here we report measurement of the parallax and proper motion of methanol masers in S 252 and G232.6+1.0. The parallax of S 252 is 0.476 ± 0.006 mas (2.10 +0.027 −0.026 kpc), placing it in the Perseus spiral arm. The parallax of G232.6+1.0 is 0.596 ± 0.035 mas (1.68 +0.11 −0.09 kpc), placing it between the Carina-Sagittarius and Perseus arms, possibly in a Local (Orion) spur of the Carina-Sagittarius arm. For both sources, kinematic distances are significantly greater than their parallax distances. Our parallaxes and proper motions yield full space motions accurate to ≈ 1 km s −1 . Both sources orbit the Galaxy ∼ 13 km s −1 slower than circular rotation.
Astrometric Very Long Baseline Interferometry (VLBI) observations of maser sources in the Milky Way are used to map the spiral structure of our Galaxy and to determine fundamental parameters such as the rotation velocity (Θ0) and curve and the distance to the Galactic center (R0). Here, we present an update on our first results, implementing a recent change in the knowledge about the Solar motion. It seems unavoidable that the IAU recommended values for R0 and Θ0 need a substantial revision. In particular the combination of 8.5 kpc and 220 km s −1 can be ruled out with high confidence. Combining the maser data with the distance to the Galactic center from stellar orbits and the proper motion of Sgr A* gives best values of R0 = 8.3 ± 0.23 kpc and Θ0 = 239 or 246 ± 7 km s −1 , for Solar motions of V = 12.23 and 5.25 km s −1 , respectively. Finally, we give an outlook to future observations in the Bar and Spiral Structure Legacy (BeSSeL) Survey.
Trigonometric parallax measurements of nine water masers associated with the Local arm of the Milky Way were carried out as part of the BeSSeL Survey using the VLBA. When combined with 21 other parallax measurements from the literature, the data allow us to study the distribution and 3-dimensional motions of star forming regions in the spiral arm over the entire northern sky. Our results suggest that the Local arm does not have the large pitch angle characteristic of a short spur. Instead its active star formation, overall length (> 5 kpc), and shallow pitch angle (∼10 • ) suggest that it is more like the adjacent Perseus and Sagittarius arms; perhaps it is a branch of one of these arms. Contrary to previous results, we find the Local arm to be closer to the Perseus than to the Sagittarius arm, suggesting that a branching from the former may be more likely. An average peculiar motion of near-zero toward both the Galactic center and north Galactic pole, and counter rotation of ∼ 5 km s −1 were observed, indicating that the Local arm has similar kinematic properties as found for other major spiral arms.
We report trigonometric parallaxes for the sources NGC 7538 and Cep A, corresponding to distances of 2.65 +0.12 −0.11 kpc and 0.70 +0.04 −0.04 kpc, respectively. The distance to NGC 7538 is considerably smaller than its kinematic distance and places it in the Perseus spiral arm. The distance to Cep A is also smaller than its kinematic distance and places it in the "Local" arm or spur. Combining the distance and proper motions with observed radial velocities gives the location and full space motion of the star forming regions. We find significant deviations from circular Galactic orbits for these sources: both sources show large peculiar motions (> 10 km s −1 ) counter to Galactic rotation and NGC 7538 has a comparable peculiar motion toward the Galactic center.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.