The alcohol deprivation effect is a temporary increase in the intake of, or preference for, ethanol after a period of deprivation that may result from persistent changes in key limbic regions thought to regulate alcohol drinking, such as the nucleus accumbens. The present study tested the hypothesis that chronic alcohol drinking under continuous 24-h free-choice conditions alters dopamine and serotonin neurotransmission in the nucleus accumbens and that these alterations persist in the absence of alcohol. Using the no-net-flux microdialysis method, the steady-state extracellular concentration (point of no-netflux) for dopamine was approximately 25% higher in the adult female alcohol-preferring P rats given prior access to 10% ethanol, even after 2 weeks of ethanol abstinence, compared with the P rats gives access only to water. However, the extracellular concentration of serotonin was approximately 35% lower in animals given 8 weeks of continuous access to ethanol compared with water controls and animals deprived of ethanol for 2 weeks. The effect of local perfusion with 100 M sulpiride (D 2 receptor antagonist) and 35 M 1-(m-chlorophenyl)-biguanide (5-hydroxytryptamine 3 receptor agonist) on dopamine overflow were reduced approximately 33% in both groups of ethanol-exposed P rats compared with water controls. Freechoice alcohol drinking by P rats alters dopamine and serotonin neurotransmission in the nucleus accumbens, and many of these effects persist for at least 2 weeks in the absence of ethanol, suggesting that these underlying persistent changes may be in part responsible for increased ethanol drinking observed in the alcohol-deprivation effect.
We have previously reported that naloxone, a nonspecific opioid receptor antagonist, suppresses alcohol but not water consumption by male rats that have been genetically selected for high voluntary alcohol drinking. However, the identity of the specific opioid receptor subtype that may mediate alcohol drinking is not known. This paper reports that a selective delta opioid receptor antagonist is as effective as naloxone in suppressing alcohol consumption and that an enkephalinase inhibitor, which potentiates the action of endogenous enkephalins, increases alcohol intake. These results suggest that alcohol-induced activation of the endogenous enkephalinergic system, and occupation of delta opioid receptors, are involved in the maintenance of continued alcohol drinking.
We describe a comprehensive translational approach for identifying candidate genes for alcoholism. The approach relies on the cross-matching of animal model brain gene expression data with human genetic linkage data, as well as human tissue data and biological roles data, an approach termed convergent functional genomics. An analysis of three animal model paradigms, based on inbred alcohol-preferring (iP) and alcohol-non-preferring (iNP) rats, and their response to treatments with alcohol, was used. A comprehensive analysis of microarray gene expression data from five key brain regions (frontal cortex, amygdala, caudate-putamen, nucleus accumbens and hippocampus) was carried out. The Bayesian-like integration of multiple independent lines of evidence, each by itself lacking sufficient discriminatory power, led to the identification of high probability candidate genes, pathways and mechanisms for alcoholism. These data reveal that alcohol has pleiotropic effects on multiple systems, which may explain the diverse neuropsychiatric and medical pathology in alcoholism. Some of the pathways identified suggest avenues for pharmacotherapy of alcoholism with existing agents, such as angiotensin-converting enzyme (ACE) inhibitors. Experiments we carried out in alcohol-preferring rats with an ACE inhibitor show a marked modulation of alcohol intake. Other pathways are new potential targets for drug development. The emergent overall picture is that physical and physiological robustness may permit alcohol-preferring individuals to withstand the aversive effects of alcohol. In conjunction with a higher reactivity to its rewarding effects, they may able to ingest enough of this nonspecific drug for a strong hedonic and addictive effect to occur.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.