Racquet sports can provide positive benefits for human healthcare. A reliable detection device that can effectively distinguish movement with similar sub-features is therefore needed. In this paper, a racquet sports recognition wristband system and a multilayer hybrid clustering model are proposed to achieve reliable activity recognition and perform number counting. Additionally, a Bluetooth mesh network enables communication between a phone and wristband, and sets-up the connection between multiple devices. This allows users to track their exercise through the phone and share information with other players and referees. Considering the complexity of the classification algorithm and the user-friendliness of the measurement system, the improved multi-layer hybrid clustering model applies three-level K-means clustering to optimize feature extraction and segmentation and then uses the density-based spatial clustering of applications with noise (DBSCAN) algorithm to determine the feature center of different movements. The model can identify unlabeled and noisy data without data calibration and is suitable for smartwatches to recognize multiple racquet sports. The proposed system shows better recognition results and is verified in practical experiments.
The traditional weighing and selling process of non-barcode items requires manual service, which not only consumes manpower and material resources but is also more prone to errors or omissions of data. This paper proposes an intelligent self-service vending system embedded with a single camera to detect multiple products in real-time performance without any labels, and the system realizes the integration of weighing, identification, and online settlement in the process of non-barcode items. The system includes a self-service vending device and a multi-device data management platform. The flexible configuration of the structure gives the system the possibility of identifying fruits from multiple angles. The height of the system can be adjusted to provide self-service for people of different heights; then, deep learning skill is applied implementing product detection, and real-time multi-object detection technology is utilized in the image-based checkout system. In addition, on the multi-device data management platform, the information docking between embedded devices, WeChat applets, Alipay, and the database platform can be implemented. We conducted experiments to verify the accuracy of the measurement. The experimental results demonstrate that the correlation coefficient R2 between the measured value of the weight and the actual value is 0.99, and the accuracy of non-barcode item prediction is 93.73%. In Yangpu District, Shanghai, a comprehensive application scenario experiment was also conducted, proving that our system can effectively deal with the challenges of various sales situations.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.