Lanthanide(III)-based coordination complexes have been explored as a source of bifunctional molecular materials combining Single-Molecule Magnet (SMM) behavior with visible-to-near-infrared photoluminescence. In pursuit of more advanced multifunctionality, the next target is to functionalize crystalline solids based on emissive molecular nanomagnets toward high proton conductivity and an efficient luminescent thermometric effect. Here, a unique multifunctional molecule-based material, (H5O2)2(H)[YbIII(hmpa)4][CoIII(CN)6]2·0.2H2O (1, hmpa = hexamethylphosphoramide), composed of molecular {YbCo2}3– anions noncovalently bonded to acidic H5O2 + and H+ ions, is reported. The resulting YbIII complexes present a slow magnetic relaxation below 6 K and room temperature NIR 4f-centered photoluminescence sensitized by [Co(CN)6]3– ions. The microporous framework, built on these emissive magnetic molecules, exhibits a high proton conductivity of the H-hopping mechanism reaching σ of 1.7 × 10–4 S·cm–1 at 97% relative humidity, which classifies 1 as a superionic conductor. Moreover, the emission pattern is strongly temperature-dependent which was utilized in achieving a highly sensitive single-center luminescent thermometer with a relative thermal sensitivity, S r > 1% K–1 in the 50–175 K range. This work shows an unprecedented combination of magnetic, optical, and electrical functionalities in a single phase working as a proton conductive NIR-emissive thermometer based on Single-Molecule Magnets.
A heptacyclic carbocycle possessing three p-quinodimethane units conjugated in one plane has been synthesized and shown to exhibit distinct biradical characteristics. The molecule has a HOMO/LUMO band gap of ca. 1 eV and a S(0)-T(1) energy gap of 2.12 kcal/mol, and it absorbs and emits near-IR light at room temperature. It is air-stable under ambient light for several months and thermally stable up to 160 °C under nitrogen, and it undergoes reversible two-electron oxidation and reduction. The synthetic approach is such that a smaller and larger oligo-p-quinodimethane can be synthesized.
The addition of chiral 2,2'-(2,6-pyridinediyl)bis(4-isopropyl-2-oxazoline) (iPr-Pybox) to a self-assembled Co(II)–[W(V)(CN)(8)] magnetic system gives two enantiomorphic cyano-bridged chains, {[Co(II)((S,S)-iPr-Pybox)(MeOH)](3)[W(V)(CN)(8)](2)·5.5MeOH·0.5H(2)O}(n) (1-SS) and {[Co(II)((R,R)-iPr-Pybox) (MeOH)](3)[W(V)(CN)(8)](2)·5.5MeOH·0.5H(2)O}(n) (1-RR). Both compounds crystallize with a structure containing a unique crossed arrangement of one-dimensional chains that form a microporous supramolecular network with large channels (14.9 Å × 15.1 Å × 15.3 Å) filled with methanol. The investigated materials exhibited optical chirality, as confirmed by natural circular dichroism and UV-vis absorption spectra. 1-(SS) and 1-(RR) are paramagnets with cyano-mediated Co(II)-W(V) magnetic couplings that lead to a specific spin arrangement with half of the W(V) ions coupled ferromagnetically with their Co(II) neighbors and the other half coupled antiferromagnetically. Significant magnetic anisotropy with the easy axis along the [101] direction was confirmed by single-crystal magnetic studies and can be explained by the single-ion anisotropy of elongated octahedral Co(II) sites. Below 3 K, the frequency-dependent χ(M)"(T) signal indicated slow magnetic relaxation characteristic of single-chain magnets.
Two chiral luminescent derivatives of pyridine bis(oxazoline) (Pybox), (SS/RR)-iPr-Pybox (2,6-bis[4-isopropyl-2-oxazolin-2-yl]pyridine) and (SRSR/RSRS)-Ind-Pybox (2,6-bis[8H-indeno[1,2-d]oxazolin-2-yl]pyridine), have been combined with lanthanide ions (Gd(3+), Nd(3+)) and octacyanotungstate(V) metalloligand to afford a remarkable series of eight bimetallic CN(-)-bridged coordination chains: {[Ln(III)(SS/RR-iPr-Pybox)(dmf)4]3[W(V)(CN)8]3}n ⋅dmf⋅4 H2O (Ln = Gd, 1-SS and 1-RR; Ln = Nd, 2-SS and 2-RR) and {[Ln(III)(SRSR/RSRS-Ind-Pybox)(dmf)4][W(V)(CN)8]}n⋅5 MeCN⋅4 MeOH (Ln = Gd, 3-SRSR and 3-RSRS; Ln = Nd, 4-SRSR and 4-RSRS). These materials display enantiopure structural helicity, which results in strong optical activity in the range 200-450 nm, as confirmed by natural circular dichroism (NCD) spectra and the corresponding UV/Vis absorption spectra. Under irradiation with UV light, the Gd(III)-W(V) chains show dominant ligand-based red phosphorescence, with λmax ≈660 nm for 1-(SS/RR) and 680 nm for 3-(SRSR/RSRS). The Nd(III)-W(V) chains, 2-(SS/RR) and 4-(SRSR/RSRS), exhibit near-infrared luminescence with sharp lines at 986, 1066, and 1340 nm derived from intra-f (4)F3/2 → (4)I9/2,11/2,13/2 transitions of the Nd(III) centers. This emission is realized through efficient ligand-to-metal energy transfer from the Pybox derivative to the lanthanide ion. Due to the presence of paramagnetic lanthanide(III) and [W(V)(CN)8](3-) moieties connected by cyanide bridges, 1-(SS/RR) and 3-(SRSR/RSRS) are ferrimagnetic spin chains originating from antiferromagnetic coupling between Gd(III) (SGd = 7/2) and W(V) (SW = 1/2) centers with J1-(SS) = -0.96(1) cm(-1), J1-(RR) =-0.95(1) cm(-1), J3-(SRSR) = -0.91(1) cm(-1), and J3-(RSRS) =-0.94(1) cm(-1). 2-(SS/RR) and 4-(SRSR/RSRS) display ferromagnetic coupling within their Nd(III)-NC-W(V) linkages.
Microporous magnets compose a class of multifunctional molecule-based materials where desolvation-driven structural transformation leads to the switching of magnetic properties. Herein, we present a special type of microporous magnet where a dehydration–hydration process within a bimetal coordination framework results in the switching of emissive DyIII single-molecule magnets (SMMs). We report a three-dimensional (3-D) cyanido-bridged coordination polymer, {[DyIII(H2O)2][CoIII(CN)6]}·2.2H2O (1), and its dehydrated form of {DyIII[CoIII(CN)6]} (2), which was obtained through a reversible single-crystal-to-single-crystal transformation. Both phases are composed of paramagnetic DyIII centers alternately arranged with diamagnetic hexacyanidocobaltates(III). The hydrated phase contains eight-coordinated [DyIII(μ-NC)6(H2O)2]3– complexes of a square antiprism geometry, while the dehydrated form contains six-coordinated [DyIII(μ-NC)6]3– moieties of a trigonal prism geometry. This change in coordination geometry results in the generation of DyIII single-molecule magnets in 2, whereas slow magnetic relaxation effect is not observed for DyIII sites in 1. The D 4d-to-D 3h symmetry change of DyIII complexes produces also the shift of photoluminescent color from nearly white to deep yellow thanks to the modulation of emission bands of f–f electronic transitions. A combined approach utilizing dc magnetic data and low-temperature emission spectra confirmed an axial crystal field of trigonal prismatic DyIII complexes in 2, which produces an Orbach type of slow magnetic relaxation. Therefore, we present a unique route to the efficient switching of SMM behavior and photoluminescence of DyIII complexes embedded in a 3-D cyanido-bridged framework.
A bimetallic pentadecanuclear cyanido-bridged {Fe9[W(CN)8]6 (MeOH)24}·xMeOH cluster of an Fe(II/III)-W(IV/V) mixed valence nature, reveals a reversible single-crystal-to-single-crystal transformation, concomitant with metal-to-metal charge transfer between Fe and W ions. The dominance of (HS)Fe(II)-NC-W(V) units at a high temperature, and (HS)Fe(III)-NC-W(IV) units at a low temperature, leads to an unprecedented reversed thermal hysteresis loop in magnetic measurements.
Precisely controlled stoichiometric mixtures of Co(2+) and Fe(2+) metal ions were combined with the [W(V)(CN)8](3-) metalloligand in a methanolic solution to produce a series of trimetallic cyanido-bridged {Fe(9-x)Co(x)[W(CN)8]6(MeOH)24}·12MeOH (x = 0, 1, ..., 8, 9; compounds 0, 1, ..., 8, 9) clusters. All the compounds, 0-9, are isostructural, and consist of pentadecanuclear clusters of a six-capped body-centered cube topology, capped by methanol molecules which are coordinated to 3d metal centers. Thus, they can be considered as a unique type of a cluster-based molecular solid solution in which different Co/Fe metal ratios can be introduced while preserving the coordination skeleton and the overall molecular architecture. Depending on the Co/Fe ratio, 0-9 exhibit an unprecedented tuning of magnetic functionalities which relate to charge transfer assisted phase transition effects and slow magnetic relaxation effects. The iron rich 0-5 phases exhibit thermally induced reversible structural phase transitions in the 180-220 K range with the critical temperatures being linearly dependent on the value of x. The phase transition in 0 is accompanied by (HS)Fe(II) W(V) ↔ (HS)Fe(III) W(IV) charge transfer (CT) and the additional minor contribution of a Fe-based spin crossover (SCO) effect. The Co-containing 1-5 phases reveal two simultaneous electron transfer processes which explore (HS)Fe(II) W(V) ↔ (HS)Fe(III) W(IV) CT and the more complex (HS)Co(II) W(V) ↔ (LS)Co(III) W(IV) charge transfer induced spin transition (CTIST). Detailed structural, spectroscopic, and magnetic studies help explain the specific role of both types of CN(-)-bridged moieties: the Fe-NC-W linkages activate the molecular network toward a phase transition, while the subsequent Co-W CTIST enhances structural changes and enlarges thermal hysteresis of the magnetic susceptibility. On the second side of the 0-9 series, the vanishing phase transition in the cobalt rich 6-9 phases results in the high-spin ground state, and in the occurrence of a slow magnetic relaxation process at low temperatures. The energy barrier of the magnetic relaxation gradually increases with the increasing value of x, reaching up to ΔE/kB = 22.3(3) K for compound 9.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers