Aneuploidy is a hallmark of human cancers, but the effects of aneuploidy on protein expression remain poorly understood. To uncover how chromosome copy number changes influence the cancer proteome, we conducted an analysis of hundreds of human cancer cell lines and tumors with matched copy number, RNA expression, and protein expression data. We found that a majority of proteins exhibit dosage compensation and fail to change by the degree expected based on chromosome copy number alone. We uncovered a variety of gene groups that were recurrently buffered upon both chromosome gain and loss, including protein complex subunits and cell cycle genes. Several genetic and biophysical factors were predictive of protein buffering, highlighting complex post-translational regulatory mechanisms that maintain appropriate gene product dosage. Finally, we established that chromosomal aneuploidy has an unexpectedly moderate effect on the expression of oncogenes and tumor suppressors, demonstrating that these key cancer drivers can be subject to dosage compensation as well. In total, our comprehensive analysis of aneuploidy and dosage compensation across cancers will help identify the key driver genes encoded on altered chromosomes and will shed light on the overall consequences of aneuploidy during tumor development.
Chromosomal instability (CIN) and aneuploidy are similar concepts but not synonymous. CIN is the process that leads to chromosome copy number alterations, and aneuploidy is the result. While CIN and resulting aneuploidy often cause growth defects, they are also selected for in cancer cells. Although such contradicting fates may seem paradoxical at first, they can be better understood when CIN and aneuploidy are assessed separately, taking into account the in vitro or in vivo context, the rate of CIN, and severity of the aneuploid karyotype. As CIN can only be measured in living cells, which proves to be technically challenging in vivo, aneuploidy is more frequently quantified. However, CIN rates might be more predictive for tumor outcome than assessing aneuploidy rates alone. In reviewing the literature, we therefore conclude that there is an urgent need for new models in which we can monitor chromosome mis-segregation and its consequences in vivo. Also see the video abstract here: https://youtu.be/fL3LxZduchg
Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT ( Re storing D isomy in A neuploid cells using C RISPR T argeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses p53 signaling, and we show that TP53 mutations are mutually-exclusive with 1q aneuploidy in human cancers. Thus, tumor cells can be dependent on specific aneuploidies, raising the possibility that these “aneuploidy addictions” could be targeted as a therapeutic strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.