An inverse scattering problem is considered for a discontinuous Sturm-Liouville equation on the half-line 0, ∞ with a linear spectral parameter in the boundary condition. The scattering data of the problem are defined and a new fundamental equation is derived, which is different from the classical Marchenko equation. With help of this fundamental equation, in terms of the scattering data, the potential is recovered uniquely.
The aim of this paper is to present Korovkin type theorems on approximatin of continuous functions with the use of A−statistical convergence and matrix summability method which includes both convergence and almost convergence. Since statistical convergence and almost convergence methods are incompatible, we conclude that these methods can be used alternatively to get some approximation results.
In this work a Sturm-Liouville operator with piecewise continuous coefficient and spectral parameter in the boundary conditions is considered. The eigenvalue problem is investigated; it is shown that the eigenfunctions form a complete system and an expansion formula with respect to the eigenfunctions is obtained. Uniqueness theorems for the solution of the inverse problem with a Weyl function and spectral data are proved.
This work aims to examine a Sturm-Liouville operator with a piece-wise continuous coefficient and a spectral parameter in boundary condition. The orthogonality of the eigenfunctions, realness and simplicity of the eigenvalues are investigated. The asymptotic formula of the eigenvalues is found, and the resolvent operator is constructed. It is shown that the eigenfunctions form a complete system and the expansion formula with respect to eigenfunctions is obtained. Also, the evolution of the Weyl solution and Weyl function is discussed. Uniqueness theorems for the solution of the inverse problem with Weyl function and spectral data are proved.
In this paper, we consider conformable equal width wave (EW) equation in order to construct its exact solutions. This equation plays an important role in physics and gives an interesting model to define change waves with weak nonlinearity. The aim of this paper is to present new exact solutions to conformable EW equation. For this purpose, we use an effective method called Improved Bernoulli Sub-Equation Function Method (IBSEFM). Based on the values of the solutions, the 2D and 3D graphs and contour surfaces are plotted with the aid of mathematics software. The obtained results confirm that IBSEFM is a powerful mathematical tool to solve nonlinear conformable partial equations arising in mathematical physics.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.