Evolutionary Algorithms (EAs) have been recognized to be well suited to approximate the Pareto front of Multi-objective Optimization Problems (MOPs). In reality, the Decision Maker (DM) is not interested in discovering the whole Pareto front rather than finding only the portion(s) of the front that matches at most his/her preferences. Recently, several studies have addressed the decision-making task to assist the DM in choosing the final alternative. Knee regions are potential parts of the Pareto front presenting the maximal trade-offs between objectives. Solutions residing in knee regions are characterized by the fact that a small improvement in either objective will cause a large deterioration in at least another one which makes moving in either direction not attractive. Thus, in the absence of explicit DM's preferences, we suppose that knee regions represent the DM's preferences themselves. Recently, few works were proposed to find knee regions. This paper represents a further study in this direction. Hence, we propose a new evolutionary method, denoted TKR-NSGA-II, to discover knee regions of the Pareto front. In this method, the population is guided gradually by means of a set of mobile reference points. Since the reference points are updated based on trade-off information, the population converges towards knee region centers which allows the construction of a neighborhood of solutions in each knee. The performance assessment of the proposed algorithm is done on two-and three-objective knee-based test problems. The obtained results show the ability of the algorithm to: (1) find the Pareto optimal knee regions, (2) control the extent (We mean by extent the breadth/spread of the obtained knee region.) of the obtained regions independently of the geometry of the front and (3) provide competitive and better results when compared to other recently proposed methods. Moreover, we propose an interactive version of TKR-NSGA-II which is useful when the DM has no a priori information about the number of existing knees in the Pareto optimal front.
The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling problem that allows to process operations on one machine out of a set of alternative machines. The FJSP is an NPhard problem consisting of two sub-problems, which are the assignment and the scheduling problems. In this paper, we propose how to solve the FJSP by hybrid metaheuristics-based clustered holonic multiagent model. First, a neighborhood-based genetic algorithm (NGA) is applied by a scheduler agent for a global exploration of the search space. Second, a local search technique is used by a set of cluster agents to guide the research in promising regions of the search space and to improve the quality of the NGA final population. The efficiency of our approach is explained by the flexible selection of the promising parts of the search space by the clustering operator after the genetic algorithm process, and by applying the intensification technique of the tabu search allowing to restart the search from a set of elite solutions to attain new dominant scheduling solutions. Computational results are presented using four sets of well-known benchmark literature instances. New upper bounds are found, showing the effectiveness of the presented approach.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.