The pyrolytic and oxidative behaviour of the biofuel 2,5-dimethylfuran (25DMF) has been studied in a range of experimental facilities in order to investigate the relatively unexplored combustion chemistry of the title species and to provide combustor relevant experimental data. The pyrolysis of 25DMF has been re-investigated in a shock tube using the single-pulse method for mixtures of 3% 25DMF in argon, at temperatures from 1200-1350 K, pressures from 2-2.5 atm and residence times of approximately 2 ms.Ignition delay times for mixtures of 0.75% 25DMF in argon have been measured at atmospheric pressure, temperatures of 1350-1800 K at equivalence ratios (ϕ) of 0.5, 1.0 and 2.0 along with auto-ignition measurements for stoichiometric fuel in air mixtures of 25DMF at 20 and 80 bar, from 820-1210 K. This is supplemented with an oxidative speciation study of 25DMF in a jet-stirred reactor (JSR) from 770-1220 K, at 10.0 atm, residence times of 0.7 s and at ϕ = 0.5, 1.0 and 2.0.Laminar burning velocities for 25DMF-air mixtures have been measured using the heat-flux method at unburnt gas temperatures of 298 and 358 K, at atmospheric pressure from ϕ = 0.6-1.6. * address: Combustion Chemistry Centre, National University of Ireland, Galway, University Road Galway, Ireland. Phone: +353-91-494087. k.somers1@nuigalway.ie, URL: http://c3.nuigalway.ie/ (Kieran P. Somers)..
Electronic Supplementary Information Electronic supplementary information includes:• Tabulations of all new experimental data • Pressure-time profiles for high pressure shock tube experiments and volume-time profiles used for corresponding simulations• A description of the optimized group additivity rules for substituted furans
•The chemkin format kinetic mechanism, thermodynamic and transport files• A list of species structures and names for interpretation of kinetic mechanism and sensitivity analysis diagrams These laminar burning velocity measurements highlight inconsistencies in the current literature data and provide a validation target for kinetic mechanisms.A detailed chemical kinetic mechanism containing 2768 reactions and 545 species has been simultaneously developed to describe the combustion of 25DMF under the experimental conditions described above. Numerical modelling results based on the mechanism can accurately reproduce the majority of experimental data. At high temperatures, a hydrogen atom transfer reaction is found to be the dominant unimolecular decomposition pathway of 25DMF. The reactions of hydrogen atom with the fuel are also found to be important in predicting pyrolysis and ignition delay time experiments.Numerous proposals are made on the mechanism and kinetics of the previously unexplored intermediate temperature combustion pathways of 25DMF. Hydroxyl radical addition to the furan ring is highlighted as an important fuel consuming reaction, leading to the formation of methyl vinyl ketone and acetyl radical. The chemically activated recombination of HȮ 2 or CH 3 Ȯ 2 with the 5-methyl-2-furanylmethyl radical, forming a 5-methy...
Pyrolysis and oxidation of acetaldehyde were studied behind reflected shock waves in the temperature range 1000-1700 K at total pressures between 1.2 and 2.8 atm. The study was carried out using the following methods, (1) time-resolved IR-laser absorption at 3.39 µm for acetaldehyde decay and CH-compound formation rates, (2) time-resolved UV absorption at 200 nm for CH 2 CO and C 2 H 4 product formation rates, (3) time-resolved UV absorption at 216 nm for CH 3 formation rates, (4) time-resolved UV absorption at 306.7 nm for OH radical formation rate, (5) time-resolved IR emission at 4.24 µm for the CO 2 formation rate, (6) time-resolved IR emission at 4.68 µm for the CO and CH 2 CO formation rate, and (7) a single-pulse technique for product yields. From a computer-simulation study, a 178-reaction mechanism that could satisfactorily model all of our data was constructed using new reactions, CH 3 CHO (+M) → CH 4 + CO (+M), CH 3 CHO (+M) → CH 2 CO + H 2 (+M),
International audienceNew experimental results for the oxidation of n-butylbenzene, a component of diesel fuel, have been obtained using three different devices. A rapid compression machine has been used to measure autoignition delay times after compression at temperatures in the range 640-960 K, at pressures from 13 to 23 bar, and at equivalence ratios from 0.3 to 0.5. Results show low-temperature behavior, with the appearance of cool flames and a negative temperature coefficient (NTC) region for the richest mixtures. To investigate this reaction at higher temperatures, a shock tube has been used. The shock tube study was performed over a wide range of experimental temperatures, pressures, and equivalence ratios, with air used as the fuel diluent. The ignition temperatures were recorded over the range 980-1740 K, at reflected shock pressures of 1, 10, and 30 atm. Mixtures were investigated at equivalence ratios of 0.3, 0.5, 1.0 and 2.0 in order to determine the effects of fuel concentration on reactivity over the entire temperature range. Using a jet-stirred reactor, the formation of numerous reaction products has been followed at temperatures from 550 to 1100 K, at atmospheric pressure, and at equivalence ratios of 0.25, 1.0, and 2.0. Slight low-temperature reactivity (below 750 K) with a NTC region has been observed, especially for the leanest mixtures. A detailed chemical kinetic model has been written based on rules similar to those considered for alkanes by the system EXGAS developed at Nancy. Simulations using this model have been compared to the experimental results presented in this study, but also to results in the literature obtained in a jet-stirred reactor at 10 bar, in the same rapid compression machine for stoichiometric mixtures, in a plug flow reactor at 1069 K and atmospheric pressure, and in a low-pressure (0.066 bar) laminar premixed methane flame doped with n-butylbenzene. The observed agreement is globally better than that obtained with models from the literature. Flow rate and sensitivity analyses have revealed a preponderant role played by the addition to molecular oxygen of resonantly stabilized, 4-phenylbut-4-yl radicals
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.