Monotherapy with S-1 demonstrated noninferiority to gemcitabine in overall survival with good tolerability and presents a convenient oral alternative for locally advanced and metastatic pancreatic cancer.
Background & Aims
The management of pancreatic cysts poses challenges to both patients and their physicians. We investigated whether a combination of molecular markers and clinical information could improve the classification of pancreatic cysts and management of patients.
Methods
We performed a multi-center, retrospective study of 130 patients with resected pancreatic cystic neoplasms (12 serous cystadenomas, 10 solid-pseudopapillary neoplasms, 12 mucinous cystic neoplasms, and 96 intraductal papillary mucinous neoplasms). Cyst fluid was analyzed to identify subtle mutations in genes known to be mutated in pancreatic cysts (BRAF, CDKN2A, CTNNB1, GNAS, KRAS, NRAS, PIK3CA, RNF43, SMAD4, TP53 and VHL); to identify loss of heterozygozity at CDKN2A, RNF43, SMAD4, TP53, and VHL tumor suppressor loci; and to identify aneuploidy. The analyses were performed using specialized technologies for implementing and interpreting massively parallel sequencing data acquisition. An algorithm was used to select markers that could classify cyst type and grade. The accuracy of the molecular markers were compared with that of clinical markers, and a combination of molecular and clinical markers.
Results
We identified molecular markers and clinical features that classified cyst type with 90%–100% sensitivity and 92%–98% specificity. The molecular marker panel correctly identified 67 of the 74 patients who did not require surgery, and could therefore reduce the number of unnecessary operations by 91%.
Conclusions
We identified a panel of molecular markers and clinical features that show promise for the accurate classification of cystic neoplasms of the pancreas and identification of cysts that require surgery.
CH-EUS is useful for characterizing conventional EUS-detected solid pancreatic lesions. EUS equipped with contrast harmonic imaging may play an important role in the characterization of small tumors that other imaging methods fail to depict and may improve the diagnostic yield of EUS-FNA.
Purpose: The carcinoembryonic antigen glypican-3 (GPC3) is an ideal target of anticancer immunotherapy against hepatocellular carcinoma (HCC). In this nonrandomized, open-label, phase I clinical trial, we analyzed the safety and efficacy of GPC3 peptide vaccination in patients with advanced HCC.Experimental Design: Thirty-three patients with advanced HCC underwent GPC3 peptide vaccination (intradermal injections on days 1, 15, and 29 with dose escalation). The primary endpoint was the safety of GPC3 peptide vaccination. The secondary endpoints were immune response, as measured by IFN-g ELISPOT assay, and the clinical outcomes tumor response, time to tumor progression, and overall survival (OS).Results: GPC3 vaccination was well-tolerated. One patient showed a partial response, and 19 patients showed stable disease 2 months after initiation of treatment. Four of the 19 patients with stable disease had tumor necrosis or regression that did not meet the criteria for a partial response. Levels of the tumor markers a-fetoprotein and/or des-g-carboxy prothrombin temporarily decreased in nine patients. The GPC3 peptide vaccine induced a GPC3-specific CTL response in 30 patients. Furthermore, GPC3-specific CTL frequency after vaccination correlated with OS. OS was significantly longer in patients with high GPC3-specific CTL frequencies (N ¼ 15) than in those with low frequencies (N ¼ 18; P ¼ 0.033).Conclusions: GPC3-derived peptide vaccination was well-tolerated, and measurable immune responses and antitumor efficacy were noted. This is the first study to show that peptide-specific CTL frequency can be a predictive marker of OS in patients with HCC receiving peptide vaccination.
Grading of PNETs by the highest Ki-67 index in EUS-FNA specimens with adequate cellularity has a high concordance with grading of resected specimens, and can predict long term patient survival with high accuracy.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.