Strength exercise is a strategy applied in sports and physical training processes. It may induce skeletal muscle hypertrophy. The hypertrophy is dependent on the eccentric muscle actions and on the inflammatory response. Here, we evaluate the physiological, immunological, and inflammatory responses induced by a session of strength training with a focus on predominance of the eccentric muscle actions. Twenty volunteers were separated into two groups: the untrained group (UTG) and the trained group (TG). Both groups hold 4 sets of leg press, knee extensor, and leg curl at 65% of personal one-repetition maximum (1RM), 90 s of recovery, and 2″conc/3″eccen of duration of execution in each repetition. Blood samples were collected immediately before and after, 2 hours after, and 24 h after the end of the exercise session. The single session of strength training elevated the heart rate (HR), rating of perceived exertion (RPE), visual analog scale (VAS), and lactate blood level in UTG and TG. Creatine kinase (CK) levels were higher at 2 and 24 h after the end of the exercise in UTG and, in TG, only at 24 h. The number of white blood cells (WBC) and neutrophils increased in UTG and TG, post and 2 h after exercise. Lymphocytes increased postexercise but reduced 2 h after exercise in both groups, while the number of monocytes increased only immediately after the exercise session in UTG and TG. The strength training session elevated the levels of apelin and fatty acid-binding proteins-3 (FABP3) in both groups and brain-derived neurotrophic factor (BDNF) in TG. The single exercise session was capable of inducing elevated HR, RPE, lactate level, and CK levels. This protocol changed the count/total number of circulating immune cells in both groups (UTG and TG) and also increased the level of plasmatic apelin, BDNF, and FLTS1 only in TG and FABP3 myokines in both groups.
The constant growth of obesity and overweight only goes to show the need of intervention to reverse those figures. In this context, physical activity can contribute with a double effect, through acute and chronic physiological changes: in the first condition one can find the energetic cost from exercising and recovery (EPOCexcess post-exercise oxygen consumption), and in the second, the resting metabolic rate (RMR). Thus, this revision's goal was to investigate the effect of EPOC and RMR as supporting factors in weight-control programs, willing to discuss the different results found in literature, concerning both magnitude and length of EPOC, as well as discussing the effects of exercising in RMR. Research shows, in general terms, that the most intense exercises are able to promote a bigger EPOC when compared to exercises of lower intensity, while a bigger EPOC was found in resistive exercises when compared to aerobic ones. Concerning RMR changes, the acute results show significant increase at it; however, long-term results are more discrepant, due to the difficulty in measuring this variable without overestimating it. In summary, literature points that periodicity of a training that can maximize both EPOC and RMR may be an important factor to weight-losing and, although energetic cost of these variables in a therapy session seem rather small, it can be significant in a long-term relation. However, new studies are important to confirm these evidences.
We investigated whether swim training protects skeletal muscle from oxidative damage in response to a maximum progressive exercise. First, we investigated the effect of swim training on the activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), in the gastrocnemius muscle of C57Bl/6 mice, 48 h after the last training session. Mice swam for 90 min, twice a day, for 5 weeks at 31°C (± 1°C). The activities of SOD and CAT were increased in trained mice (P < 0.05) compared to untrained group. However, no effect of training was observed in the activity of GPx. In a second experiment, trained and untrained mice were submitted to a maximum progressive swim test. Compared to control mice (untrained, not acutely exercised), malondialdehyde (MDA) levels were increased in the skeletal muscle of both trained and untrained mice after maximum swim. The activity of GPx was increased in the skeletal muscle of both trained and untrained mice, while SOD activity was increased only in trained mice after maximum swimming. CAT activity was increased only in the untrained compared to the control group. Although the trained mice showed increased activity of citrate synthase in skeletal muscle, swim performance was not different compared to untrained mice. Our results show an imbalance in the activities of SOD, CAT and GPx in response to swim training, which could account for the oxidative damage observed in the skeletal muscle of trained mice in response to maximum swim, resulting in the absence of improved exercise performance.
Aging is a biological process during which chronic low-grade inflammation is present due to changes in the immune system of the elderly. The main objective of this study is to evaluate the effects of resistance training associated with dietary advice on chronic inflammation in the elderly. We conducted a prospective intervention study in which we evaluated anthropometric parameters and inflammatory biomarkers (CRP, IL-8, CCL-2, and leptin) in 40 elderly people before and after long-term progressive resistance training (19 weeks) associated with dietary advice. The participants trained twice a week on nonconsecutive days, and the training lasted one hour with an intensity of 60-85% of 1-MR. Dietary advice was explained in person and individually focusing on foods rich in compounds with anti-inflammatory and antioxidant properties. Participants were instructed at the beginning of the training program, and dietary advice was reinforced verbally weekly. There was an improvement in body composition evidenced by a reduction in waist circumference and body fat percentage and by the increase in arm circumference, calf circumference, and corrected arm muscle area. In addition, there was a reduction in the inflammatory biomarkers CCL-2 (p=0.01) and leptin (p<0.01). Resistance training associated with dietary guidance can contribute to a healthy aging due to observed improvements in body composition and in the inflammatory profile of the elderly.
Background: to evaluate the effects of one week of supplementation with curcumin combined with piperine on physical performance, immune system cell counts, muscle damage, and plasma levels of inflammatory markers after a treadmill running training session. Methods: This study is a double-blind, crossover-balanced clinical trial with a three-week intervention. Sixteen male runners with a mean age of 36 ± 9 years and VO2 max of 60.6 ± 9.03 mL.kg −1 min −1 were recruited and randomly divided into 2 groups: the first group (CPG) was supplemented daily for 7 days with 500 mg of curcumin + 20 mg piperine, and the second group (PG) was supplemented with 540 mg of cellulose. After the 7th day of supplementation, the volunteers participated in the experimental running protocol, where blood samples were collected before, after, and one hour after exercise for analysis of the number of leukocytes, creatine kinase, and cytokine concentration (IL-2, TNF-α, IFN, IL-6, and IL-10) using flow cytometry. This process was repeated, reversing the supplementation offered to the groups. Results: curcumin and piperine supplementation could not change the physical performance, immune cell counts, and muscle damage; however, the aerobic fatiguing exercise protocol inhibited the elevation of the plasmatic levels of some cytokines. The running exercise protocol could elevate the circulating levels of IL-2 (from 49.7 to 59.3 pg/mL), TNF-α (from 48.5 to 51.5 pg/mL), INF (from 128.8 to 165.0 pg/mL), IL-6 (from 63.1 to 77.3 pg/mL), and IL-10 (from 48.9 to 59.6 pg/mL) 1 h after the end of the running protocol. However, the curcumin and piperine supplementation could inhibit this elevation. Conclusions: curcumin and piperine supplementation had no effect on physical performance, immune cell counts, or muscle damage; however, the supplementation could modulate the kinetics of IL-2, TNF-α, INF, IL-6, and IL-10 1 h after the end of exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.