The forearm rotation changes sensory inputs to the central nervous system, thereby providing orientation of the hand for grasping an object. Electrical activities of the muscles, induced by transcranial magnetic stimulation to the brain, i.e., motor evoked potentials (MEPs), are used for estimation of the excitability of motor neurons in the brain and spinal cord. It is well known that rotational positioning of the forearm influences MEPs of forearm muscles through modulation of excitability in the central nervous system. In the present study, we investigated whether such a posture-dependent change of MEPs could be found in upper arm and intrinsic hand muscles at three different rotational forearm positions: the most internal (pronation), neutral, and most external (supination) positions of rotation. MEPs were simultaneously recorded from the four muscles, biceps brachii (BB), triceps brachii (TB), abductor digiti minimi (ADM), and abductor pollicis brevis (AbPB). MEP amplitudes and latencies in BB, TB and ADM were significantly larger and shorter, respectively, in supination compared to the values in other positions. By contrast, MEP of AbPB in supination was lower in amplitude and longer in latency. Importantly, muscle lengths of TB, ADM and AbPB are constant in any rotational forearm positions, excluding the possibility of the muscle-length dependent change of spinal reflex. Therefore, these results might be attributable to the posture-dependent modulation of the motor cortex activity for the upper limb. The motor cortex probably changes the control strategy for the upper limb muscles in accordance with the sensory input from the forearm. motor evoked potentials; forearm rotation; hand and arm; motor cortex; α -motoneuron
Hemispatial neglect is a common disorder that can occur after a lesion in the right hemisphere. Its main characterization is the difficulty in processing visual stimuli emanating from the space contralateral to the lesion. Pencil and paper tests (such as target cancellation, line bisection, or drawing copy) are used to diagnose neglect. We propose using virtual reality technology and haptic force feedback to enhance pencil and paper tests. Our system can track the patients' eye-gaze and their hand movements. Also, the efficiency of several techniques used to decrease the neglect in different sensory spaces are investigated.
A prototype of wireless surface electrical stimulation system combined with the fuzzy FES controller was developed for rehabilitation training with functional electrical stimulation (FES). The developed FES system has three features for rehabilitation training: small-sized electrical stimulator for surface FES, wireless connection between controller and stimulators, and between controller and sensors, and the fuzzy FES controller based on the cycle-to-cycle control for repetitive training. The developed stimulator could generate monophasic or biphasic high voltage stimulus pulse and could output stimulation pulses continuously more than 20 hours with 4 AAA batteries. The developed system was examined with neurologically intact subjects and hemiplegic subjects in knee joint control. The maximum knee joint angle was controlled by regulating burst duration of stimulation pulses by the fuzzy controller. In the results of two experiments of knee extension angle control and knee flexion and extension angle control, the maximum angles reached their targets within small number of cycles and were controlled stably in the stimulation cycles after reaching the target. The fuzzy FES controller based on the cycle-to-cycle control worked effectively to reach the target angle and to compensate difference in muscle properties between subjects. The developed wireless surface FES system would be practical in clinical applications of repetitive execution of similar movements of the limbs for motor rehabilitation with FES.
Our objective is to develop and test a system for diagnosis and rehabilitation of patients with hemispatial neglect. The system consists of a 3D-haptic virtual world seen through stereo shutter-glasses. Patients interact by manipulating a haptic interface. The software adapts the virtual world accordingly to haptic interface and eye tracking feedback. Offline analysis is possible by reviewing recorded data. Observations made during experimentations with hemiplegics patients and future works with hemispatial neglect patients are discussed.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.