A common structural motif consisting of a cystine knot and a small triple-stranded @-sheet has been defined from comparison of the 3-dimensional structures of the polypeptides w-conotoxin GVIA (Conus geogruphus), kalata BI (Oldenlundiu uffinis DC), and CMTI-I (Curcurbitu muximu). These 3 polypeptides have diverse biological activities and negligible amino acid sequence identity, but each contains 3 disulfide bonds that give rise to a cystine knot. This knot consists of a ring formed by the first 2 bonds (1-4 and 2-5) and the intervening polypeptide backbone, through which the third disulfide (3-6) passes. The other component of this motif is a triple-stranded, antiparallel @-sheet containing a minimum of 10 residues, XXC2, XC,X, XXC,X (where the numbers on the half-cystine residues refer to their positions in the disulfide pattern). The presence in these polypeptides of both the cystine knot and antiparallel @-sheet suggests that both structural features are required for the stability of the motif. This structural motif is also present in other protease inhibitors and a spider toxin. It appears to be one of the smallest stable globular domains found in proteins and is commonly used in toxins and inhibitors that act by blocking the function of larger protein receptors such as ion channels or proteases.
-Conotoxins are peptide inhibitors of voltage-sensitive sodium channels (VSSCs). Synthetic forms of -conotoxins PIIIA and PIIIA-(2-22) were found to inhibit tetrodotoxin (TTX)-sensitive VSSC current but had little effect on TTX-resistant VSSC current in sensory ganglion neurons. In rat brain neurons, these peptides preferentially inhibited the persistent over the transient VSSC current. Radioligand binding assays revealed that PIIIA, PIIIA-(2-22), and -conotoxin GIIIB discriminated among TTX-sensitive VSSCs in rat brain, that these and GIIIC discriminated among the corresponding VSSCs in human brain, and GIIIA had low affinity for neuronal VSSCs.1 H NMR studies found that PIIIA adopts two conformations in solution due to cis/ trans isomerization at hydroxyproline 8. The major trans conformation results in a three-dimensional structure that is significantly different from the previously identified conformation of -conotoxins GIIIA and GIIIB that selectively target TTX-sensitive muscle VSSCs. Comparison of the structures and activity of PIIIA to muscle-selective -conotoxins provides an insight into the structural requirements for inhibition of different TTX-sensitive sodium channels by -conotoxins.
The growth and metabolic actions of growth hormone (GH) are believed to be mediated through the GH receptor (GHR) by JAK2 activation. The GHR exists as a constitutive homodimer, with signal transduction by ligand-induced realignment of receptor subunits. Based on the crystal structures, we identify a conformational change in the F'G' loop of the lower cytokine module, which results from binding of hGH but not G120R hGH antagonist. Mutations disabling this conformational change cause impairment of ERK but not JAK2 and STAT5 activation by the GHR in FDC-P1 cells. This results from the use of two associated tyrosine kinases by the GHR, with JAK2 activating STAT5, and Lyn activating ERK1/2. We provide evidence that Lyn signals through phospholipase C gamma, leading to activation of Ras. Accordingly, mice with mutations in the JAK2 association motif respond to GH with activation of hepatic Src and ERK1/2, but not JAK2/STAT5. We suggest that F'G' loop movement alters the signalling choice between JAK2 and a Src family kinase by regulating TMD realignment. Our findings could explain debilitated ERK but not STAT5 signalling in some GH-resistant dwarfs and suggest pathway-specific cytokine agonists.
Due to their selectivity towards voltage-sensitive calcium channels (VSCCs) omega-conotoxins are being exploited as a new class of therapeutics in pain management and may also have potential application in ischaemic brain injury. Here, the structure-activity relationships (SARs) of several omega-conotoxins including GVIA, MVIIA, CVID and MVIIC are explored. In addition, the three-dimensional structures of these omega-conotoxins and some structurally related peptides that form the cysteine knot are compared, and the effects of the solution environment on structure discussed. The diversity of binding and functional assays used to measure omega-conotoxin potencies at the N-type VSCC warranted a re-evaluation of the relationship between these assays. With one exception, [A22]-GVIA, this analysis revealed a linear correlation between functional (peripheral N-type VSCCs) and radioligand binding assays (central N-type VSCCs) for the omega-conotoxins and analogues that were tested over three studies. The binding and functional results of several studies are compared in an attempt to identify and distinguish those residues that are important in omega-conotoxin function as opposed to those that form part of the structural scaffold. Further to determining what omega-conotoxin residues are important for VSCC binding, the range of possible interactions between the ligand and channel are considered and the factors that influence the selectivity of MVIIA, GVIA and CVID towards N-type VSCCs examined.
Mu-conotoxins are three-loop peptides produced by cone snails to inhibit voltage-gated sodium channels during prey capture. Using polymerase chain reaction techniques, we identified a gene sequence from the venom duct of Conus tulipa encoding a new mu-conotoxin-TIIIA (TIIIA). A 125I-TIIIA binding assay was established to isolate native TIIIA from the crude venom of Conus striatus. The isolated peptide had three post-translational modifications, including two hydroxyproline residues and C-terminal amidation, and <35% homology to other mu-conotoxins. TIIIA potently displaced [3H]saxitoxin and 125I-TIIIA from rat brain (Nav1.2) and skeletal muscle (Nav1.4) membranes. Alanine and glutamine scans of TIIIA revealed several residues, including Arg14, that were critical for high-affinity binding to tetrodotoxin (TTX)-sensitive Na+ channels. We were surprised to find that [E15A]TIIIA had a 10-fold higher affinity than TIIIA for TTX-sensitive sodium channels (IC50, 15 vs. 148 pM at rat brain membrane). TIIIA was selective for Nav1.2 and -1.4 over Nav1.3, -1.5, -1.7, and -1.8 expressed in Xenopus laevis oocytes and had no effect on rat dorsal root ganglion neuron Na+ current. 1H NMR studies revealed that TIIIA adopted a single conformation in solution that was similar to the major conformation described previously for mu-conotoxin PIIIA. TIIIA and analogs provide new biochemical probes as well as insights into the structure-activity of mu-conotoxins.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.