This paper presents an open-circuit fault detection method for a grid-connected NeutralPoint Clamped (NPC) inverter system. Further, a fault-tolerant control method under an open-circuit fault in clamping diodes is proposed. Under the grid-connected condition, it is impossible to identify the location of a faulty switch by the conventional methods which usually use the distortion of outputs because the distortion of the outputs is the same in some fault cases. The proposed fault detection method identifies the location of the faulty switch and the faulty clamping diode of the NPC inverter without any additional hardware or complex calculations. In the case of the clamping diode faults, the NPC inverter can transfer full rated power with sinusoidal currents by the proposed fault-tolerant control. The feasibility of the proposed fault detection and fault-tolerant control methods for the gridconnected NPC inverter are verified by simulation and experimental results.
The Tubbs Fire (2017) and Camp Fire (2018) are the first known wildfires where widespread drinking water chemical contamination was discovered in the water distribution network and not in the source water after the fire. In both disasters, drinking water exceeded state and federal government‐defined exposure limits for several volatile organic compound (VOC) contaminants (e.g., benzene at 40,000 µg/L [Tubbs] and >2,217 µg/L [Camp]). This work outlines factors that influence wildfire‐induced drinking water quality threats based on the findings from these two fires and explores related scientific and policy issues. For example, certain plastics in the network may serve as a primary VOC source through in situ plastic pyrolysis. Depressurization of the distribution network likely transported contaminated water that subsequently contaminated undamaged infrastructure. As wildfires at the wildland–urban interface are likely to occur more frequently, greater scientific evidence is needed to guide agency responses that will better protect public health.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.