Abstract. This paper proposes a new definition of the averaging of discrete probability distributions as a barycenter over the Wasserstein space. Replacing the Wasserstein original metric by a sliced approximation over 1D distributions allows us to use a fast stochastic gradient descent algorithm. This new notion of barycenter of probabilities is likely to find applications in computer vision where one wants to average features defined as distributions. We show an application to texture synthesis and mixing, where a texture is characterized by the distribution of the response to a multiscale oriented filter bank. This leads to a simple way to navigate over a convex domain of color textures.
Abstract-The Scale Invariant Feature Transform (SIFT) algorithm is widely used in computer vision to match features between images or to localize and recognize objets. However, mostly because of speckle noise, it does not perform well on synthetic aperture radar (SAR) images. We present here an improvement of this algorithm for SAR images, named SAR-SIFT. A new gradient computation, yielding an orientation and a magnitude robust to speckle noise, is first introduced. It is then used to adapt several steps of the SIFT algorithm to SAR images. We study the improvement brought by this new algorithm, compared to existing approaches. We present an application of SAR-SIFT for the registration of SAR images in different configurations, especially with different incidence angles.
Accurate junction detection and characterization are of primary importance for several aspects of scene analysis, including depth recovery and motion analysis. In this work, we introduce a generic junction analysis scheme. The first asset of the proposed procedure is an automatic criterion for the detection of junctions, permitting to deal with textured parts in which no detection is expected. Second, the method yields a characterization of L-, Y-and X-junctions, including a precise computation of their type, localization and scale. Contrary to classical approaches, scale characterization does not rely on the linear scale-space, therefore enabling geometric accuracy. First, an a contrario approach is used to compute the meaningfulness of a junction. This approach relies on a statistical modeling of suitably normalized gray level gradients. Then, exclusion principles between junctions permit their precise characterization. We give implementation details for this procedure and evaluate its efficiency through various experiments.
This paper introduces a new texture analysis scheme, which is invariant to local geometric and radiometric changes. The proposed methodology relies on the topographic map of images, obtained from the connected components of level sets. This morphological tool, providing a multi-scale and contrast-invariant representation of images, is shown to be well suited to texture analysis. We first make use of invariant moments to extract geometrical information from the topographic map. This yields features that are invariant to local similarities or local affine transformations. These features are invariant to any local contrast change. We then relax this invariance by computing additional features that are invariant to local affine contrast changes and investigate the resulting analysis scheme by performing classification and retrieval experiments on three texture databases. The obtained experimental results outperform the current state of the art in locally invariant texture analysis.
This paper presents a novel unsupervised method to transfer the style of an example image to a source image. The complex notion of image style is here considered as a local texture transfer, eventually coupled with a global color transfer. For the local texture transfer, we propose a new method based on an adaptive patch partition that captures the style of the example image and preserves the structure of the source image. More precisely, this example-based partition predicts how well a source patch matches an example patch. Results on various images show that our method outperforms the most recent techniques.
Abstract. In this paper, we address the problem of the restoration of images which have been affected by impulse noise or by a mixture of Gaussian and impulse noise. We rely on a patch-based approach, which requires careful choices for both the distance between patches and for the statistical estimator of the original patch. Experiments are led in the case of pure impulse noise and in the case of a mixture. The method proves to be particularly powerful, especially for the restoration of textured regions, and compares favorably to recent restoration methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.