Temperature is one of the main factors affecting the properties of polyurethane foams, and there are large differences in the mechanical properties of polyurethane foams at different temperatures. To understand the effect of temperature on the mechanical properties of polyurethane foams and to provide a theoretical basis for the application of polyurethane foams in extreme environments, this paper systematically describes the research on the effect of mold temperature, raw material temperature, and environmental temperature on the microstructure and mechanical properties of polyurethane foams in the formation and service stages of rigid polyurethane foams by domestic and foreign scholars, and summarizes the effect of temperature on the mechanical properties of polyurethane foams and the mechanism of action. A review of the literature shows that the effect of different temperatures on the mechanical properties of polyurethane foams can be summarized. The literature review shows that there are certain changes in the foaming process, pore structure, and mechanical properties of polyurethane foams at different temperatures, and the increase in temperature generally leads to the increase in pore size, decrease in density, and decrease in mechanical properties of polyurethane foams.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers