Multilevel converters have been under research and development for more than three decades and have found successful industrial application. However, this is still a technology under development, and many new contributions and new commercial topologies have been reported in the last few years. The aim of this paper is to group and review these recent contributions, in order to establish the current state of the art and trends of the technology, to provide readers with a comprehensive and insightful review of where multilevel converter technology stands and is heading. This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry. In addition, new promising topologies are discussed. Recent advances made in modulation and control of multilevel converters are also addressed. A great part of this paper is devoted to show nontraditional applications powered by multilevel converters and how multilevel converters are becoming an enabling technology in many industrial sectors. Finally, some future trends and challenges in the further development of this technology are discussed to motivate future contributions that address open problems and explore new possibilities.
This paper deals with a crucial aspect in the control of grid-connected power converters, i.e., the detection of the fundamental-frequency positive-sequence component of the utility voltage under unbalanced and distorted conditions. Specifically, it proposes a positive-sequence detector based on a new decoupled double synchronous reference frame phase-locked loop (DDSRF-PLL), which completely eliminates the detection errors of conventional synchronous reference frame PLL's (SRF-PLL). This is achieved by transforming both positive-and negative-sequence components of the utility voltage into the double SRF, from which a decoupling network is developed in order to cleanly extract and separate the positive-and negative-sequence components. The resultant DDSRF-PLL conducts then to a fast, precise, and robust positive-sequence voltage detection even under unbalanced and distorted grid conditions. The paper presents a detailed description and derivation of the proposed detection method, together with an extensive evaluation using simulation and experimental results from a digital signal processor-based laboratory prototype in order to verify and validate the excellent performance achieved by the DDSRF-PLL.Index Terms-Grid-connected converters, phase locked loop (PLL), positive sequence signals detection, synchronous reference frame (SRF).
Abstract-This paper studies different circulating current references for the modular multilevel converter (MMC). The circulating current references are obtained from the instantaneous values of the output current and modulation signal of the phase-leg. Therefore, determination of the amplitude and phase of the output current is not needed, which is a significant improvement compared to other methods such as those based on injecting specific harmonics in the circulating currents. Among the different methods studied in this paper, a new method is introduced, which is able to reduce the capacitor voltage ripples compared to the other methods. A closed-loop control is also proposed which is able to track the circulating current references. With the discussed methods the average values of the capacitor voltages are maintained at their reference while the voltage ripples are kept low. Experimental results are presented to demonstrate the effectiveness of the proposed and discussed methods.
Abstract-This paper is related to faults that can appear in multilevel (ML) inverters, which have a high number of components. This is a subject of increasing importance in high-power inverters. First, methods to identify a fault are classified and briefly described for each topology. In addition, a number of strategies and hardware modifications that allow for operation in faulty conditions are also presented. As a result of the analyzed works, it can be concluded that ML inverters can significantly increase their availability and are able to operate even with some faulty components.
The increasing penetration of renewable energy sources (RES) poses a major challenge to the operation of the electricity grid owing to the intermittent nature of their power output. The ability of utility-scale battery energy storage systems (BESS) to provide grid support and smooth the output of RES in combination with their decrease in cost has fueled research interest in this technology over the last couple of years. Power electronics (PE) is the key enabling technology for connecting utility-scale BESS to the medium voltage grid. PE ensure energy is delivered while complying with grid codes and dispatch orders. Simultaneously, the PE must regulate the operating point of the batteries, thus for instance preventing overcharge of batteries. This paper presents a comprehensive review of PE topologies for utility BESS that have been proposed either within industry or the academic literature. Moreover, a comparison of the presently most commercially viable topologies is conducted in terms of estimated power conversion efficiency and relative cost.Index Terms-Battery energy storage system, dc-ac converter, dc-dc converter, power conversion, power electronics I. INTRODUCTIONRenewable energy sources (RES), including wind turbines and solar PV systems, have been installed at a fast pace globally in recent years [1], [2]. The intermittent nature of output power from RES becomes a serious concern for the stability of the grid, particularly with increased RES penetration and at times when a high percentage of instantaneous demand is supplied by RES. In the case of Germany where 80% of instantaneous demand was supplied by RES on the 23 rd August 2015 [3], significant operating reserves were required to meet the demand in case of a sudden decrease in the output of RES, thus causing an increase in the operational cost of the electricity network. Utility-scale battery energy storage systems (BESS) featuring fast response characteristics can provide an economic and promising alternative to smooth the output power of RES [4] and provide operating reserves [5], as there is virtually no cost to the system when BESS are in reserve state i.e. not providing power [6].
Abstract-This paper presents a novel modulation strategy for n-phase neutral-point-clamped (NPC) converters. The proposed modulation strategy is able to control and completely remove the low frequency neutral-point (NP) voltage oscillations for any operation point and load types. Even when unbalanced and/or nonlinear loads are considered, the NP voltage remains under total control. Consequently, the strategy is very attractive for nphase active filters. In addition, it enables the use of low capacity film capacitors in NPC converters.The proposed modulation takes the carrier-based modulation strategy as a basis. It is formulated following a generalized approach that makes it expandable to n-phase NPC converters. In addition, the NP voltage is controlled directly using a closedloop algorithm that does not rely on the use of the linear control regulators or the additional compensators used in other modulation algorithms. Therefore, no tuning of parameters is required and it performs optimally for any operating conditions and kind of loads, including unbalanced and nonlinear loads. Although the high frequency harmonic content of the output voltages may increase, the weighted total harmonic distortion generated by the proposed strategy is similar to that of a standard sinusoidal pulsewidth modulated strategy. The proposed modulation algorithm has been tested in a four-leg NPC converter prototype performing as a three-and four-phase system and operating with balanced and unbalanced loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.