Objective Increasing prevalence of childhood obesity and associated risks of adult type disease have led to worldwide concern. It remains unclear how genetic predisposition, environmental exposure to obesogenic food, and developmental programming interact to lead to overweight and obese children. The development of a nonhuman primate model of obesity, and particularly juvenile obesity, is an important step to elucidating the factors associated with obesity and evaluating intervention strategies. Design and Methods Infant marmosets were followed from birth to 12 months of age. Feeding phenotypes were determined through the use of behavioral observation, solid food intake trials, and liquid feeding trials monitored via lickometer. Results Marmosets found to be Obese at 12 months of age (more than 14%body fat) start consuming solid food sooner and initiate more time off of care givers. These individuals developed stable feeding phenotypes that included being more efficient consumers during liquid intake trials, drinking more grams of diet per contact with the licksit. Conclusions The weaning process appears to be particularly important in the development of feeding phenotypes and the development of juvenile obesity for the marmosets, and thus this is the time that should be focused upon for intervention testing in both nonhuman primates and children.
Interventions to extend lifespan and improve health with increasing age would have significant impact on a growing aged population. There are now several pharmaceutical interventions that extend lifespan in laboratory rodent models with rapamycin, an inhibitor of mechanistic target of rapamycin (mTOR) being the most well studied. In this study, we report on the hematological effects on a cohort of middle-aged common marmosets (Callithrix jacchus) that were enrolled in a study to test the effects of daily rapamycin treatment on aging in this species. In addition, we assessed whether sex was a significant factor in either baseline assessment or as an interaction with rapamycin treatment. Among our cohort at baseline, we found few differences in either basic morphology or hematological markers of blood cell counts, metabolism or inflammation between male and female marmosets. After dosing with rapamycin, surprisingly we found trough blood concentrations of rapamycin were significantly lower in female compared to male marmosets. Despite this pharmacological difference, both sexes had only minor changes in cellular blood counts after 9 months of rapamycin. These data then suggest that the potential clinical hematological side effects of rapamycin are not likely outcomes of long-term rapamycin in relatively healthy, middle-aged marmosets.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers