Brazil currently has one of the fastest growing SARS-CoV-2 epidemics in the world. Owing to limited available data, assessments of the impact of non-pharmaceutical interventions (NPIs) on virus spread remain challenging. Using a mobility-driven transmission model, we show that NPIs reduced the reproduction number from >3 to 1–1.6 in São Paulo and Rio de Janeiro. Sequencing of 427 new genomes and analysis of a geographically representative genomic dataset identified >100 international virus introductions in Brazil. We estimate that most (76%) of the Brazilian strains fell in three clades that were introduced from Europe between 22 February11 March 2020. During the early epidemic phase, we found that SARS-CoV-2 spread mostly locally and within-state borders. After this period, despite sharp decreases in air travel, we estimated multiple exportations from large urban centers that coincided with a 25% increase in average travelled distances in national flights. This study sheds new light on the epidemic transmission and evolutionary trajectories of SARS-CoV-2 lineages in Brazil, and provide evidence that current interventions remain insufficient to keep virus transmission under control in the country.
BackgroundA century after its discovery, Chagas disease still represents a major neglected tropical threat. Accurate diagnostics tools as well as surrogate markers of parasitological response to treatment are research priorities in the field. The purpose of this study was to evaluate the performance of PCR methods in detection of Trypanosoma cruzi DNA by an external quality evaluation.Methodology/FindingsAn international collaborative study was launched by expert PCR laboratories from 16 countries. Currently used strategies were challenged against serial dilutions of purified DNA from stocks representing T. cruzi discrete typing units (DTU) I, IV and VI (set A), human blood spiked with parasite cells (set B) and Guanidine Hidrochloride-EDTA blood samples from 32 seropositive and 10 seronegative patients from Southern Cone countries (set C). Forty eight PCR tests were reported for set A and 44 for sets B and C; 28 targeted minicircle DNA (kDNA), 13 satellite DNA (Sat-DNA) and the remainder low copy number sequences. In set A, commercial master mixes and Sat-DNA Real Time PCR showed better specificity, but kDNA-PCR was more sensitive to detect DTU I DNA. In set B, commercial DNA extraction kits presented better specificity than solvent extraction protocols. Sat-DNA PCR tests had higher specificity, with sensitivities of 0.05–0.5 parasites/mL whereas specific kDNA tests detected 5.10−3 par/mL. Sixteen specific and coherent methods had a Good Performance in both sets A and B (10 fg/µl of DNA from all stocks, 5 par/mL spiked blood). The median values of sensitivities, specificities and accuracies obtained in testing the Set C samples with the 16 tests determined to be good performing by analyzing Sets A and B samples varied considerably. Out of them, four methods depicted the best performing parameters in all three sets of samples, detecting at least 10 fg/µl for each DNA stock, 0.5 par/mL and a sensitivity between 83.3–94.4%, specificity of 85–95%, accuracy of 86.8–89.5% and kappa index of 0.7–0.8 compared to consensus PCR reports of the 16 good performing tests and 63–69%, 100%, 71.4–76.2% and 0.4–0.5, respectively compared to serodiagnosis. Method LbD2 used solvent extraction followed by Sybr-Green based Real time PCR targeted to Sat-DNA; method LbD3 used solvent DNA extraction followed by conventional PCR targeted to Sat-DNA. The third method (LbF1) used glass fiber column based DNA extraction followed by TaqMan Real Time PCR targeted to Sat-DNA (cruzi 1/cruzi 2 and cruzi 3 TaqMan probe) and the fourth method (LbQ) used solvent DNA extraction followed by conventional hot-start PCR targeted to kDNA (primer pairs 121/122). These four methods were further evaluated at the coordinating laboratory in a subset of human blood samples, confirming the performance obtained by the participating laboratories.Conclusion/SignificanceThis study represents a first crucial step towards international validation of PCR procedures for detection of T. cruzi in human blood samples.
Alcohol is an important risk factor for upper aerodigestive cancers and is principally metabolized by alcohol dehydrogenase (ADH) enzymes. We have investigated six ADH genetic variants in over 3,800 aerodigestive cancer cases and 5,200 controls from three individual studies. Gene variants rs1229984 (ADH1B) and rs1573496 (ADH7) were significantly protective against aerodigestive cancer in each individual study and overall (P ¼ 10 À10 and 10 À9 , respectively). These effects became more apparent with increasing alcohol consumption (P for trend ¼ 0.0002 and 0.065, respectively). Both gene effects were independent of each other, implying that multiple ADH genes may be involved in upper aerodigestive cancer etiology.The alcohol dehydrogenase (ADH) pathway includes seven distinct ADH genes, a key candidate gene group for aerodigestive cancers 1-3 .Studies of aerodigestive cancer in populations of European origin have focused on ADH1C with little evidence of any effect 4 . We previously reported an association for ADH1B R48H (rs1229984) in a central European (CE) population 5 and now consider the effect of this and five other ADH variants in an expanded study comprising 809 aerodigestive cancer cases and 2,586 controls from the CE study as well as a further 3,067 aerodigestive cancer cases and 2,692 controls from two other studies in Europe (ARCAGE study) and Latin America (LA study) (total of 3,876 cases and 5,278 controls). All three studies were coordinated by the International Agency for Research on Cancer (IARC) and followed a similar protocol (Supplementary Methods online). Of the 3,876 cases, 1,790 were cancers of the oral cavity or pharynx, 1,659 were cancers of the hypopharynx or larynx and 427 were cancers of the esophagus (Supplementary Table 1 online). Cases with a histology other than squamous cell were excluded.The HapMap Consortium has genotyped 163 SNPs in the vicinity of the ADH gene cluster with a minor allele frequency (MAF) of 4% or more in the CEPH Utah (CEU) population 6 . Inspection of the linkage disequilibrium (LD) pattern across this region indicates that ADH1A, ADH1B, ADH1C, ADH4, ADH5 and ADH6 are relatively highly correlated, whereas ADH7 showed little correlation with the remaining six ( Supplementary Fig. 1a online). From all verified missense SNPs in the seven ADH genes found in both the NCBI SNP and SNP500 databases 7 , we selected eight that had a MAF 4 4% in the CEU population. Three missense SNPs in ADH4 (rs1126671, rs1126673 and rs1042364) were in strong LD, and thus were genotyped by the highly correlated tagging SNP rs1984362 (r 2 4 0.89). In total, we genotyped six genetic variants (five missense SNPs and one tagging SNP) in all three studies (Table 1 and Supplementary Table 2 online).In the pooled analysis on all 3,876 cases and 5,278 controls, four variants reported a significant association (Supplementary Table 3 online). The most prominent was with rs1229984 (in ADH1B; OR for codominant model ¼ 0.59 (95% CI ¼ 0.50-0.69); P under codominant model ¼ 8 Â 10 À10 ). This variant w...
A group of 208 human immunodeficiency virus (HIV)-infected women in
A very low prevalence of HPV DNA and serum antibodies was observed among cases in both CE and LA. The proportion of head and neck cancer caused by HPV may vary substantially between different geographical regions and studies that are designed to evaluate the impact of HPV vaccination on HNSCC need to consider this heterogeneity.
Background There are few reports of miscarriages or stillbirths in women infected with SARS-CoV-2. We present five consecutive cases of fetal death (≥12 weeks) without other putative causes in women with laboratory-confirmed (RT-PCR) COVID-19 managed in a single Brazilian institution. Case series All five women were outpatients with mild or moderate forms of COVID-19 and were not taking any medication. Four were nulliparous, all were overweight or obese, and none had any comorbidities or pregnancy complications that could contribute to fetal demise. Fetal death occurred at 21–38 weeks of gestation, on COVID-days 1–22. SARS-Cov-2 was detected by RT-PCR in amniotic fluid in one case and in placental specimens in two cases. All five women had acute chorioamnionitis on placental histology, massive deposition of fibrin, mixed intervillitis/villitis, and intense neutrophil and lymphocyte infiltration. One fetus had neutrophils inside alveolar spaces, suggestive of fetal infection. Conclusions These five cases of fetal demise in women with confirmed COVID-19 without any other significant clinical or obstetric disorders suggest that fetal death can be an outcome of SARS-CoV-2 infection in pregnancy. The intense placental inflammatory reaction in all five cases raises the possibility of a direct effect of SARS-CoV-2 on the placenta.
Viremia was detected after defervescence in adult patients classified as having DHF or intermediate DF/DHF. Secondary infection was not a predictor of severe clinical manifestation in adults with infected with the DV3 serotype.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers