For over 40 years, physicists have considered possible uses for neutrino detectors in nuclear nonproliferation, arms control, and fissile materials security. Neutrinos are an attractive fission signature because they readily pass through matter. The same property makes neutrinos challenging to detect in systems that would be practical for nuclear security applications. This colloquium presents a broad overview of several potential neutrino applications, including the near-field monitoring of known reactors, far-field monitoring of known or discovery of undeclared reactors, detection of reactor waste streams, and detection of nuclear explosions. We conclude that recent detector advances have made near-field monitoring feasible. Farther-field reactor detection and waste stream detection monitoring are possible in some cases with further research and development. Very long-range reactor monitoring and nuclear explosion detection do not appear feasible for the foreseeable future due to considerable physical and/or practical constraints.
This paper presents the model-based design and evaluation of an instrument that estimates incident neutron direction using the kinematics of neutron scattering by hydrogen-1 nuclei in an organic scintillator. The instrument design uses a single, nearly contiguous volume of organic scintillator that is internally subdivided only as necessary to create optically isolated pillars, i.e., long, narrow parallelepipeds of organic scintillator. Scintillation light emitted in a given pillar is confined to that pillar by a combination of total internal reflection and a specular reflector applied to the four sides of the pillar transverse to its long axis. The scintillation light is collected at each end of the pillar using a photodetector, e.g., a microchannel plate photomultiplier (MCP-PM) or a silicon photomultiplier (SiPM). In this optically segmented design, the (x, y) position of scintillation light emission (where the x and y coordinates are transverse to the long axis of the pillars) is estimated as the pillar's (x, y) position in the scintillator "block", and the z-position (the position along the pillar's long axis) is estimated from the amplitude and relative timing of the signals produced by the photodetectors at each end of the pillar. The neutron's incident direction and energy is estimated from the (x, y, z)-positions of two sequential neutron-proton scattering interactions in the scintillator block using elastic scatter kinematics. For proton recoils greater than 1 MeV, we show that the (x, y, z)-position of neutron-proton scattering can be estimated with < 1 cm root-mean-squared [RMS] error and the proton recoil energy can be estimated with < 50 keV RMS error by fitting the photodetectors' response time history to models of optical photon transport within the scintillator pillars. Finally, we evaluate several alternative designs of this proposed single-volume scatter camera made of pillars of plastic scintillator (SVSC-PiPS), studying the effect of pillar dimensions, scintillator material (EJ-204, EJ-232Q and stilbene), and photodetector (MCP-PM vs. SiPM) response vs. time. We demonstrate that the most precise estimates of incident neutron direction and energy can be obtained using a combination of scintillator material with high luminosity and a photodetector with a narrow impulse response. Specifically, we conclude that an SVSC-PiPS constructed using EJ-204 (a high luminosity plastic scintillator) and an MCP-PM will produce the most precise estimates of incident neutron direction and energy.
In this investigation, we propose several algorithms to recover the location and intensity of a radiation source located in a simulated 250 m × 180 m block in an urban center based on synthetic measurements. Radioactive decay and detection are Poisson random processes, so we employ likelihood functions based on this distribution. Due to the domain geometry and the proposed response model, the negative logarithm of the likelihood is only piecewise continuous differentiable, and it has multiple local minima. To address these difficulties, we investigate three hybrid algorithms comprised of mixed optimization techniques. For global optimization, we consider Simulated Annealing (SA), Particle Swarm (PS) and Genetic Algorithm (GA), which rely solely on objective function evaluations; i.e., they do not evaluate the gradient in the objective function. By employing early stopping criteria for the global optimization methods, a pseudo-optimum point is obtained. This is subsequently utilized as the initial value by the deterministic Implicit Filtering method (IF), which is able to find local extrema in non-smooth functions, to finish the search in a narrow domain. These new hybrid techniques combining global optimization and Implicit Filtering address difficulties associated with the non-smooth response, and their performances are shown to significantly decrease the computational time over the global optimization methods alone. To quantify uncertainties associated with the source location and intensity, we employ the Delayed Rejection Adaptive Metropolis (DRAM) and DiffeRential Evolution Adaptive Metropolis (DREAM) algorithms. Marginal densities of the source properties are obtained, and the means of the chains' compare accurately with the estimates produced by the hybrid algorithms.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.