Infection of the central nervous system (CNS) by the neurotropic JHM strain of mouse hepatitis virus (JHMV) induces an acute encephalomyelitis associated with demyelination. To examine the anti-viral and/or regulatory role of interferon-gamma (IFN-gamma) signaling in the cell that synthesizes and maintains the myelin sheath, we analyzed JHMV pathogenesis in transgenic mice expressing a dominant-negative IFN-gamma receptor on oligodendroglia. Defective IFN-gamma signaling was associated with enhanced oligodendroglial tropism and delayed virus clearance. However, the CNS inflammatory cell composition and CD8(+) T-cell effector functions were similar between transgenic and wild-type mice, supporting unimpaired peripheral and CNS immune responses in transgenic mice. Surprisingly, increased viral load in oligodendroglia did not affect the extent of myelin loss, the frequency of oligodendroglial apoptosis, or CNS recruitment of macrophages. These data demonstrate that IFN-gamma receptor signaling is critical for the control of JHMV replication in oligodendroglia. In addition, the absence of a correlation between increased oligodendroglial infection and the extent of demyelination suggests a complex pathobiology of myelin loss in which infection of oligodendroglia is required but not sufficient.
In mammals, chronic diseases resulting from infectious agents have been associated with functional T cell response deficiency, a high frequency of terminally differentiated T cells, the presence of monofunctional Ag-specific T cells, and increased expression of inhibitory receptors. Similar to other chronic diseases, the progressive loss of certain functional activities during Trypanosoma cruzi infection might result in the inability to control replication of this parasite. To examine this hypothesis, we evaluated the differentiation and cell effector function of CD8+ T cells and characterized the expression of inhibitory receptors and the presence of the parasite in the bloodstream of chagasic patients. The results showed that patients at an advanced severe disease stage had a higher frequency of terminally differentiated CD8+ T cells than patients at an early stage of the disease. A monofunctional CD8+ T cell response was observed in patients at an advanced stage, whereas the coexpression of markers that perform three and four functions in response to parasite Ags was observed in patients at a less severe disease stage. The frequency of CD8+ T cells producing granzyme B and perforin and those expressing inhibitory receptors was higher in symptomatic patients than in asymptomatic patients. Taken together, these findings suggest that during the course of Chagas disease, CD8+ T cells undergo a gradual loss of function characterized by impaired cytokine production, the presence of advanced differentiation, and increased inhibitory receptor coexpression.
BackgroundCD4+/CD8+ double positive (DP) T cells have been described in healthy individuals as well as in patients with autoimmune and chronic infectious diseases. In chronic viral infections, this cell subset has effector memory phenotype and displays antigen specificity. No previous studies of double positive T cells in parasite infections have been carried out.Methodology/Principal FindingsSeventeen chronic chagasic patients (7 asymptomatic and 10 symptomatic) and 24 non-infected donors, including 12 healthy and 12 with non-chagasic cardiomyopathy donors were analyzed. Peripheral blood was stained for CD3, CD4, CD8, HLA-DR and CD38, and lymphocytes for intracellular perforin. Antigen specificity was assessed using HLA*A2 tetramers loaded with T. cruzi K1 or influenza virus epitopes. Surface expression of CD107 and intracellular IFN-γ production were determined in K1-specific DP T cells from 11 chagasic donors. Heart tissue from a chronic chagasic patient was stained for both CD8 and CD4 by immunochemistry. Chagasic patients showed higher frequencies of DP T cells (2.1%±0.9) compared with healthy (1.1%±0.5) and non-chagasic cardiomyopathy (1.2%±0.4) donors. DP T cells from Chagasic patients also expressed more HLA-DR, CD38 and perforin and had higher frequencies of T. cruzi K1-specific cells. IFN-γ production in K1-specific cells was higher in asymptomatic patients after polyclonal stimulation, while these cells tended to degranulate more in symptomatic donors. Immunochemistry revealed that double positive T cells infiltrate the cardiac tissue of a chagasic donor.ConclusionsChagasic patients have higher percentages of circulating double positive T cells expressing activation markers, potential effector molecules and greater class I antigenic specificity against T. cruzi. Although K1 tetramer positive DP T cell produced little IFN-γ, they displayed degranulation activity that was increased in symptomatic patients. Moreover, K1-specific DP T cells can migrate to the heart tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.