Quorum sensing relies upon the interaction of a diffusible signal molecule with a transcriptional activator protein to couple gene expression with cell population density. In Gram-negative bacteria, such signal molecules are usually N-acylhomoserine lactones (AHLs) which differ in the structure of their N-acyl side chains. Chromobacterium violaceurn, a Gram-negative bacterium commonly found in soil and water, produces the characteristic purple pigment violacein. Previously the authors described a violacein-negative, mini-Tn5 mutant of C. violaceurn (CV026) in which pigment production can be restored by incubation with supernatants from the wild-type strain. To develop this mutant as a general biosensor for AHLs, the natural C. violaceurn AHL molecule was first chemically characterized. By using solvent extraction, HPLC and mass spectrometry, a single AHL, N-hexanoyl-L-homoserine lactone (HHL), was identified in wild-type C. violaceurn culture supernatants which was absent from CV026. Since the production of violacein constitutes a simple assay for the detection of AHLs, we explored the ability of CV026 to respond to a series of synthetic AHL and N-acylhomocysteine thiolactone (AHT) analogues. In CV026, violacein is inducible by all the AHL and AHT compounds evaluated with N-acyl side chains from C, to C, in length, with varying degrees of sensitivity. Although AHL compounds with N-acyl side chains from C,, to C,, are unable to induce violacein production, if an activating AHL (e.g. HHL) is incorporated into the agar, these long-chain AHLs can be detected by their ability to inhibit violacein production. The versatility of CV026 in facilitating detection of AHL mixtures extracted from culture supernatants and separated by thin-layer chromatography is also demonstrated. These simple bioassays employing CV026 thus greatly extend the ability to detect a wide spectrum of AHL signal molecules.
Resveratrol is a cancer preventative agent that is found in red wine. Piceatannol is a closely related stilbene that has antileukaemic activity and is also a tyrosine kinase inhibitor. Piceatannol differs from resveratrol by having an additional aromatic hydroxy group. The enzyme CYP1B1 is overexpressed in a wide variety of human tumours and catalyses aromatic hydroxylation reactions. We report here that the cancer preventative agent resveratrol undergoes metabolism by the cytochrome P450 enzyme CYP1B1 to give a metabolite which has been identified as the known antileukaemic agent piceatannol. The metabolite was identified by high performance liquid chromatography analysis using fluorescence detection and the identity of the metabolite was further confirmed by derivatisation followed by gas chromatography -mass spectrometry studies using authentic piceatannol for comparison. This observation provides a novel explanation for the cancer preventative properties of resveratrol. It demonstrates that a natural dietary cancer preventative agent can be converted to a compound with known anticancer activity by an enzyme that is found in human tumours. Importantly this result gives insight into the functional role of CYP1B1 and provides evidence for the concept that CYP1B1 in tumours may be functioning as a growth suppressor enzyme.
Indole-3-carbinol (I3C) and 3,3-diindolylmethane (DIM) are promising cancer chemopreventive agents in rodent models, but there is a paucity of data on their pharmacokinetics and tissue disposition. The disposition of I3C and its acid condensation products, DIM, [2-(indol-3-ylmethyl)-indol-3-yl]indol-3-ylmethane (LTr 1 ), indolo[3,2b]carbazole (ICZ) and 1-(3-hydroxymethyl)-indolyl-3-indolylmethane (HI-IM) was studied, after oral administration of I3C (250 mg/kg) to female CD-1 mice. Blood, liver, kidney, lung, heart, and brain were collected between 0.25 and 24 h after administration and the plasma and tissue concentrations of I3C and its derivatives determined by high-performance liquid chromotography. I3C was rapidly absorbed, distributed, and eliminated from plasma and tissues, falling below the limit of detection by 1 h. Highest concentrations of I3C were detected in the liver where levels were approximately 6-fold higher than those in the plasma. Levels of DIM, LTr 1 , and HI-IM were much lower, although they persisted in plasma and tissues for considerably longer. DIM and HI-IM were still present in the liver 24 h after I3C administration. Tissue levels of DIM and LTr 1 were found to be in equilibrium with plasma at almost every time point measured. In addition to acid condensation products of I3C, a major oxidative metabolite (indole-3-carboxylic acid) and a minor oxidative metabolite (indole-3-carboxaldehyde) were detected in plasma of mice after oral administration of I3C. ICZ was also tentatively identified in the liver of these mice. This study shows for the first time that, after oral administration to mice, I3C, in addition to its acid condensation products, is absorbed from the gut and distributed systemically into a number of well-perfused tissues, thus allowing the possibility for some pharmacological activity of the parent compound in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.