Changes in axial tibial rotation after anterior cruciate ligament sectioning were evaluated in 14 fresh human knee joints. Simulation of vertical stance in a quadriceps-stabilized knee was performed. Internal and external rotational torques were applied before and after anterior cruciate ligament sectioning. Pivot shift tests were done in the intact and anterior cruciate ligament sectioned knee. Results of pivot shift tests were all negative before sectioning and positive after isolated sectioning. No significant change in axial rotation occurred between the intact and sectioned knee for external rotation (P = 0.24) or internal rotation (P = 0.12). Presence of a load at the femoral housing in both the intact and ligament-sectioned knees caused a significant change in external rotation (P < 0.0001). No significant change was noted in internal rotation between loaded and unloaded states (P = 0.70). Total tibial rotation in the intact knee was noted to vary between 31 degrees at 0 degree of flexion and 42 degrees at 60 degrees of flexion. These results suggest that the anterior cruciate ligament does not play a significant role in limiting axial rotation and that rotational instability is not a major factor after isolated anterior cruciate ligament rupture.
Chronic rotator cuff (RC) tears affect a large portion of the population and result in substantial upper extremity impairment, shoulder weakness, pain and limited range of motion. Regardless of surgical or conservative treatment, persistent atrophic muscle changes limit functional restoration and may contribute to surgical failure. We hypothesized that deficits in the skeletal muscle progenitor (SMP) cell pool could contribute to poor muscle recovery following tendon repair. Biopsies were obtained from patients undergoing arthroscopic RC surgery. The SMP population was quantified, isolated and assayed in culture for its ability to proliferate and fuse in-vitro and in-vivo. The SMP population was larger in muscles from cuffs with partial tears compared with no tears or full thickness tears. However, SMPs from muscles in the partial tear group also exhibited reduced proliferative ability. Cells from all cuff states were able to fuse robustly in culture and engraft when injected into injured mouse muscle, suggesting that when given the correct signals, SMPs are capable of contributing to muscle hypertrophy and regeneration regardless of tear severity. The fact that this does not appear to happen in-vivo helps focus future therapeutic targets for promoting muscle recovery following rotator cuff repairs and may help improve clinical outcomes.
Muscle stiffness after rotator cuff tendon injury is more severe with large tears. This finding supports the concept of early intervention, when tendon tears are smaller, and interventions targeting the extracellular matrix.
Rotator cuff (RC) disease is an extremely common condition associated with shoulder pain, reduced functional capacities and impaired quality of life. It primarily involves alterations in tendon health and mechanical properties that can ultimately lead to tendon failure. RC tendon tears induce progressive muscular changes that negatively impact surgical reparability of the RC tendons and clinical outcomes. At the same time, a significant base of clinical data suggests a relatively weak relationship between RC integrity and clinical presentation, emphasizing the multifactorial aspects of RC disease. This review aims to summarize the potential contribution of peripheral, spinal and supraspinal neural factors that may: (i) exacerbate structural and functional muscle changes induced by tendon tear, (ii) compromise the reversal of these changes during surgery and rehabilitation, (iii) contribute to pain generation and persistence of pain, iv) impair shoulder function through reduced proprioception, kinematics and muscle recruitment, and iv) help to explain interindividual differences and response to treatment. Given the current clinical and scientific interest in peripheral nerve injury in the context of RC disease and surgery, we carefully reviewed this body of literature with a particular emphasis for suprascapular neuropathy that has generated a large number of studies in the past decade. Within this process, we highlight the gaps in current knowledge and suggest research avenues for scientists and clinicians.
Chronic rotator cuff (RC) tears are a common and debilitating injury, characterized by dramatic expansion of adipose tissue, muscle atrophy, and limited functional recovery. The role of adipose expansion in RC pathology is unknown; however, given the identified paracrine/endocrine regulation by other adipose depots, it likely affects tissue function outside its boundaries. Therefore, we characterized the epimuscular (EM) fat depot of the human rotator cuff, defined its response to RC tears, and evaluated its influence on myogenesis in vitro. EM fat biopsies exhibited morphological and functional features of human beige fat compared with patient-matched s.c. biopsies, which appeared whiter. The transcriptional profile of EM fat and isolated EM adipose-derived stem cells (ASCs) shifted as a function of the tear state; EM fat from intact cuffs had significantly elevated expression of the genes associated with uncoupled respiration, and the EM fat from torn cuffs had increased expression of beige-selective genes. EM ASC cocultures with human-and mouse-derived myogenic cells exhibited increased levels of myogenesis compared with s.c. cultures. Increased fusion and decreased proliferation of myogenic cells, rather than changes to the ASCs, were found to underlie this effect. Taken together, these data suggest that EM fat in the human rotator cuff is a novel beige adipose depot influenced by cuff state with therapeutic potential for promoting myogenesis in neighboring musculature. STEM CELLS TRANSLATIONAL MEDICINE 2015;4:764-774
SIGNIFICANCERotator cuff tears affect millions of people in the U.S.; however, current interventions are hindered by persistent muscle degeneration. This study identifies the therapeutic potential for muscle recovery in the epimuscular fat in the rotator cuff, previously considered a negative feature of the pathology, and finds that this fat is beige, rather than white. This is important for two reasons. First, the stem cells that were isolated from this beige fat are more myogenic than those from white fat, which have been the focus of stem cell-based therapies to date, suggesting epimuscular fat could be a better stem cell source to augment rotator cuff repair. Second, these beige stem cells promote myogenesis in neighboring cells in culture, suggesting the potential for this fat to be manipulated therapeutically to promote muscle recovery through secreted signals.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.