In the small intestine, the progeny of stem cells migrate in precise patterns. Absorptive, enteroendocrine, and goblet cells migrate toward the villus while Paneth cells occupy the bottom of the crypts. We show here that beta-catenin and TCF inversely control the expression of the EphB2/EphB3 receptors and their ligand ephrin-B1 in colorectal cancer and along the crypt-villus axis. Disruption of EphB2 and EphB3 genes reveals that their gene products restrict cell intermingling and allocate cell populations within the intestinal epithelium. In EphB2/EphB3 null mice, the proliferative and differentiated populations intermingle. In adult EphB3(-/-) mice, Paneth cells do not follow their downward migratory path, but scatter along crypt and villus. We conclude that in the intestinal epithelium beta-catenin and TCF couple proliferation and differentiation to the sorting of cell populations through the EphB/ephrin-B system.
Transforming growth factor-β1 plays a key role in the pathogenesis of pulmonary fibrosis, mediating extracellular matrix (ECM) gene expression through a series of intracellular signaling molecules, including Smad2 and Smad3. We show that Smad3 null mice (knockout (KO)) develop progressive age-related increases in the size of alveolar spaces, associated with high spontaneous presence of matrix metalloproteinases (MMP-9 and MMP-12) in the lung. Moreover, transient overexpression of active TGF-β1 in lungs, using adenoviral vector-mediated gene transfer, resulted in progressive pulmonary fibrosis in wild-type mice, whereas no fibrosis was seen in the lungs of Smad3 KO mice up to 28 days. Significantly higher levels of matrix components (procollagen 3A1, connective tissue growth factor) and antiproteinases (plasminogen activator inhibitor-1, tissue inhibitor of metalloproteinase-1) were detected in wild-type lungs 4 days after TGF-β1 administration, while no such changes were seen in KO lungs. These data suggest a pivotal role of the Smad3 pathway in ECM metabolism. Basal activity of the pathway is required to maintain alveolar integrity and ECM homeostasis, but excessive signaling through the pathway results in fibrosis characterized by inhibited degradation and enhanced ECM deposition. The Smad3 pathway is involved in pathogenic mechanisms mediating tissue destruction (lack of repair) and fibrogenesis (excessive repair).
Members of the Eph family of receptor tyrosine kinases control many aspects of cellular interactions during development, including axon guidance. Here, we demonstrate that EphB2 also regulates postnatal synaptic function in the mammalian CNS. Mice lacking the EphB2 intracellular kinase domain showed wild-type levels of LTP, whereas mice lacking the entire EphB2 receptor had reduced LTP at hippocampal CA1 and dentate gyrus synapses. Synaptic NMDA-mediated current was reduced in dentate granule neurons in EphB2 null mice, as was synaptically localized NR1 as revealed by immunogold localization. Finally, we show that EphB2 is upregulated in hippocampal pyramidal neurons in vitro and in vivo by stimuli known to induce changes in synaptic structure. Together, these data demonstrate that EphB2 plays an important role in regulating synaptic function.
Idiopathic pulmonary fibrosis (IPF) may be triggered by epithelial injury that results in aberrant production
The individual susceptibility to pulmonary fibrosis (PF) remains a mystery, suggesting a role for genetic predisposition. The pathogenesis of PF involves a multitude of factors mediating crosstalk between various tissue components. Some factors, such as transforming growth factor beta, are recognized as key elements in the process, whereas the role of others, such as connective tissue growth factor (CTGF), is unclear. We investigated if Balb/c mice, known to be fibrosis resistant partly due to lack of CTGF induction upon stimulation with bleomycin, can be transformed into fibrosis-sensitive individuals by generation of a CTGF-rich environment using transient overexpression of CTGF by adenoviral gene transfer (AdCTGF). We show that AdCTGF is not sufficient to cause fibrosis, and that bleomycin challenge results in inflammation, but not fibrosis, in Balb/c mouse lungs. This inflammation is accompanied by lower levels of CTGF and tissue inhibitor of metalloproteinase-1 gene expression compared with fibrosis-prone C57BL/6 mice. However, concomitant administration of AdCTGF and bleomycin leads to a persistent upregulation of tissue inhibitor of metalloproteinase-1 gene and a significant fibrotic response in Balb/c similar to that in C57BL/6 mice. We propose that CTGF is an important mediator in the pathogenesis of PF in that it provides a local microenvironment in the lung that causes individual susceptibility. CTGF should be considered as a novel drug target and as a potential marker for identifying individuals at risk.
Connective tissue growth factor (CTGF) is felt to be one of the key profibrotic factors and is a downstream effector molecule mediating the action of transforming growth factor (TGF)-beta1, a cytokine known to induce severe and progressive fibrosis. However, the in vivo fibrogenic effect of isolated CTGF expression is not well described. We used adenoviral gene transfer to transiently overexpress CTGF in rat lungs after intratracheal administration and compared it with transient overexpression of active TGF-beta1 delivered by a similar adenovirus vector. This high expression of CTGF over 6-10 days induced a moderate but reversible fibrosis. We observed an increase of fibronectin, procollagen 1a2, and endogenous CTGF gene expression at 14 days, which suggested an indirect activation by CTGF. Tissue inhibitor of metalloproteinase-1 was weakly and transiently upregulated after CTGF exposure. These same genes were robustly and persistently stimulated by TGF-beta1 from Day 3 to Day 21. This data suggested that CTGF may act as a TGF-beta1 cofactor rather than a direct fibrogenic factor. We demonstrate that CTGF overexpression can initiate fibrogenic activity but likely requires the presence of additional factors, such as tissue inhibitor of metalloproteinase-1, to maintain a nonfibrolytic environment and to cause progression of fibrosis.
Abstract:The paper describes a relative entropy procedure for imposing moment restrictions on simulated forecast distributions from a variety of models. Starting from an empirical forecast distribution for some variables of interest, the technique generates a new empirical distribution that satisfies a set of moment restrictions. The new distribution is chosen to be as close as possible to the original in the sense of minimizing the associated Kullback-Leibler Information Criterion, or relative entropy. The authors illustrate the technique by using several examples that show how restrictions from other forecasts and from economic theory may be introduced into a model's forecasts.JEL classification: E44, C53
Gram-positive bacterial cell wall components including PGN (peptidoglycan) elicit a potent pro-inflammatory response in diverse cell types, including endothelial cells, by activating TLR2 (Toll-like receptor 2) signalling. The functional integrity of the endothelium is under the influence of a network of gap junction intercellular communication channels composed of Cxs (connexins) that also form hemichannels, signalling conduits that are implicated in ATP release and purinergic signalling. PGN modulates Cx expression in a variety of cell types, yet effects in endothelial cells remain unresolved. Using the endothelial cell line b.End5, a 6 h challenge with PGN induced IL-6 (interleukin 6), TLR2 and Cx43 mRNA expression that was associated with enhanced Cx43 protein expression and gap junction coupling. Cx43 hemichannel activity, measured by ATP release from the cells, was induced following 15 min of exposure to PGN. Inhibition of hemichannel activity with carbenoxolone or apyrase prevented induction of IL-6 and TLR2 mRNA expression by PGN, but had no effect on Cx43 mRNA expression levels. In contrast, knockdown of TLR2 expression had no effect on PGN-induced hemichannel activity, but reduced the level of TLR2 and Cx43 mRNA expression following 6 h of PGN challenge. PGN also acutely induced hemichannel activity in HeLa cells transfected to express Cx43, but had no effect in Cx43-deficient HeLa OHIO cells. All ATP responses were blocked with Cx-specific channel blockers. We conclude that acute Cx43 hemichannel signalling plays a role in the initiation of early innate immune responses in the endothelium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.