The increased requirement of fatty acids forces cancer cells to enhance uptake of fatty acids from the extracellular milieu, in addition to de novo lipogenesis. Coexpression of cluster of differentiation 36 (CD36) with fatty acid transport protein 4 (FATP4) or long-chain acyl CoA synthetase 1 (ACSL1) synergistically activated fatty acid uptake in experimental models. In this study, we investigated the immunohistochemical expression of CD36, FATP4, and ACSL1 in 180 cases of clear cell renal cell carcinoma (RCC) in comparison with 80 specimens of the normal kidney. We also examined the clinical implication of these three fatty acid transporters in RCC, which was validated by an open-access The Cancer Genome Atlas data analysis. Both CD36 and FATP4 revealed higher membranous expressions in RCC tumor cells than in normal cells. In contrast, ACSL1 expression was remarkably reduced in RCC tumor cells compared to normal cells. CD36, FATP4, and ACSL1 showed high expressions in 74 (41.1%), 85 (47.2%), and 72 (40.0%) out of 180 RCC cases, respectively. Clinically, high FATP4 in tumor cells was associated with female gender (p=0.05), high TNM stage (p=0.039), tumor necrosis (p=0.009), and tumor recurrence (p=0.037), while high ACSL1 was only related to female gender (p=0.023). CD36 expression revealed no correlation with the clinicopathologic parameters of RCC. Increased FATP4 expression displayed an association with short recurrence-free survival (p=0.003). In conclusion, the high FATP4 expression was clinically associated with poor prognostic factors of RCC. Overexpression of membranous FATP4 and CD36 combined with reduced cytoplasmic expression of ACSL1 might be a tumor-specific feature of RCC, contributing to the tumorigenesis and tumor progression.
BackgroundColorectal cancer (CRC) is one of the most common malignancies worldwide. Approximately 10%–15% of the CRC cases have defective DNA mismatch repair (MMR) genes. Although the high level of microsatellite instability status is a predictor of favorable outcome in primary CRC, little is known about its frequency and importance in secondary CRC. Immunohistochemical staining (IHC) for MMR proteins (e.g., MLH1, MSH2, MSH6, and PMS2) has emerged as a useful technique to complement polymerase chain reaction (PCR) analyses. MethodsIn this study, comparison between the MMR system of primary CRCs and paired liver and lung metastatic lesions was done using IHC and the correlation with clinical outcomes was also examined. ResultsBased on IHC, 7/61 primary tumors (11.4%) showed deficient MMR systems, while 13/61 secondary tumors (21.3%) showed deficiencies. In total, 44 cases showed proficient expression in both the primary and metastatic lesions. Three cases showed deficiencies in both the primary and paired metastatic lesions. In 10 cases, proficient expression was found only in the primary lesions, and not in the corresponding metastatic lesions. In four cases, proficient expression was detected in the secondary tumor, but not in the primary tumor. ConclusionsAlthough each IHC result and the likely defective genes were not exactly matched between the primary and the metastatic tumors, identical results for primary and metastatic lesions were obtained in 77% of the cases (47/61). These data are in agreement with the previous microsatellite detection studies that used PCR and IHC.
Large cell neuroendocrine carcinoma (LCNEC) of the gallbladder is extremely rare and usually combined with other type of malignancy, mostly adenocarcinoma. We report an unusual case of combined adenosquamous carcinoma and LCNEC of the gallbladder in a 54-year-old woman. A radical cholecystectomy specimen revealed a 4.3×4.0 cm polypoid mass in the fundus with infiltration of adjacent liver parenchyma. Microscopically, the tumor consisted of two distinct components. Adenosquamous carcinoma was predominant and abrupt transition from adenocarcinoma to squamous cell carcinoma was observed. LCNEC showed round cells with large, vesicular nuclei, abundant mitotic figures, and occasional pseudorosette formation. The patient received adjuvant chemotherapy. However, multiple liver metastases were identified at 3-month follow-up. Metastatic nodules were composed of LCNEC and squamous cell carcinoma components. Detecting LCNEC component is important in gallbladder cancer, because the tumor may require a different chemotherapy regimen and show early metastasis and poor prognosis.
BackgroundMycobacterial culture is the gold standard test for diagnosing tuberculosis (TB), but it is time-consuming. Polymerase chain reaction (PCR) is a highly sensitive and specific method that can reduce the time required for diagnosis. The diagnostic efficacy of PCR differs, so this study determined the actual sensitivity of TB-PCR in tissue specimens.MethodsWe retrospectively reviewed 574 cases. The results of the nested PCR of the IS6110 gene, mycobacterial culture, TB-specific antigen-induced interferon-γ release assay (IGRA), acid-fast bacilli (AFB) staining, and histological findings were evaluated.ResultsThe positivity rates were 17.6% for PCR, 3.3% for the AFB stain, 22.2% for mycobacterial culture, and 55.4% for IGRA. PCR had a low sensitivity (51.1%) and a high specificity (86.3%) based on the culture results of other studies. The sensitivity was higher (65.5%) in cases with necrotizing granuloma but showed the highest sensitivity (66.7%) in those with necrosis only. The concordance rate between the methods indicated that PCR was the best method compared to mycobacterial culture, and the concordance rate increased for the methods using positive result for PCR or histologic features.ConclusionsPCR of tissue specimens is a good alternative to detect tuberculosis, but it may not be as sensitive as previously suggested. Its reliability may also be influenced by some histological features. Our data showed a higher sensitivity when specimens contained necrosis, which indicated that only specimens with necrosis should be used for PCR to detect tuberculosis.
In this study, we aimed to investigate the molecular biomarkers that are pivotal for the development and progression of gastric cancer (GC). We analyzed clinical specimens using RNA sequencing to identify the target genes. We found that the expression of HOXC6 mRNA was upregulated with the progression of cancer, which was validated by quantitative real time PCR and RNA in-situ hybridization. To compare the protein expression of HOXC6, we evaluated GC and normal gastric tissue samples using western blot analysis and immunohistochemistry. We detected significantly higher levels of HOXC6 in the GC tissues than in the normal controls at both mRNA and protein levels. The expression levels of HOXC6 mRNA in patients with advanced gastric cancer (AGC) were significantly higher than those in patients with early gastric cancer (EGC). Kaplan-Meier curves showed that high expression of HOXC6 mRNA is significantly associated with poor clinical prognosis. Our findings suggest that HOXC6 mRNA may be a novel biomarker and can be potentially valuable in predicting the prognosis of GC patients. Especially, HOXC6 mRNA in-situ hybridization may be a diagnostic tool for predicting prognosis of individual GC patients.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.