Exploiting and utilizing excellent gene(s) from wild species has become an essential strategy for wheat improvement. In the disomic addition line 24-6-3, the 4Ns chromosomes from Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) carried valuable tiller and strip rust resistance gene(s), which was selected from the progeny of common wheat cv. 7182 and P. huashanica via embryo culture. Cytology, genomic in situ hybridization (GISH), and EST-STS analyses were used to detect the 4Ns chromosome in wheat background and its homoeologous relationship. Cytological studies demonstrated that 24-6-3 contained 44 chromosomes and formed 22 bivalents during meiotic metaphase I. GISH using P. huashanica genomic DNA as a probe indicated that a pair of Ns-chromosomes with strong hybridization signals had been introduced into 24-6-3. Ten EST-STS markers, i.e., BE404973, BE442811, BE446061, BE446076, BE497324, BE591356, BF473854, BG274986, BQ161513 and CD373484, which were located on the homoeologous group 4 chromosomes of wheat, amplified bands unique to P. huashanica in 24-6-3. This indicated the presence of an introgressed P. huashanica Ns chromosome pair belonging to homoeologous group 4, which we designated the 4Ns disomic addition line. After it was inoculated using mixed races of stripe rust in the adult stages, 24-6-3 expressed high stripe rust resistance, which was possibly derived from its P. huashanica parent. Moreover, its increased number of tillers was probably controlled by gene(s) located in P. huashanica chromosome 4Ns. These high levels of disease resistance and excellent agronomic traits make the 24-6-3 line a promising germplasm for breeding in wheat.
The aim of this study was to characterize a Triticum aestivum-Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) disomic addition line 2-1-6-3. Individual line 2-1-6-3 plants were analyzed using cytological, genomic in situ hybridization (GISH), EST-SSR, and EST-STS techniques. The alien addition line 2-1-6-3 was shown to have two P. huashanica chromosomes, with a meiotic configuration of 2n = 44 = 22 II. We tested 55 EST-SSR and 336 EST-STS primer pairs that mapped onto seven different wheat chromosomes using DNA from parents and the P. huashanica addition line. One EST-SSR and nine EST-STS primer pairs indicated that the additional chromosome of P. huashanica belonged to homoeologous group 7, the diagnostic fragments of five EST-STS markers (BE404955, BE591127, BE637663, BF482781 and CD452422) were cloned, sequenced and compared. The results showed that the amplified polymorphic bands of P. huashanica and disomic addition line 2-1-6-3 shared 100% sequence identity, which was designated as the 7Ns disomic addition line. Disomic addition line 2-1-6-3 was evaluated to test the leaf rust resistance of adult stages in the field. We found that one pair of the 7Ns genome chromosomes carried new leaf rust resistance gene(s). Moreover, wheat line 2-1-6-3 had a superior numbers of florets and grains per spike, which were associated with the introgression of the paired P. huashanica chromosomes. These high levels of disease resistance and stable, excellent agronomic traits suggest that this line could be utilized as a novel donor in wheat breeding programs.
1567
RESEARCHT he wheat curl mite (Aceria tosichella Keifer) is a microscopic (70 ´ 250 mm), soft-bodied, yellow-white, elongated arthropod of the order Acari and family Eriophyidae. Aceria tosichella was first described from tulip bulbs (Liliaceae) by Keifer in 1938 and later reported from onion (Allium cepa L.), garlic (Allium sativum L.), and several grass species (Poaceae), including common wheat (Triticum aestivum L. em. Thell.) (Slykhuis, 1955;Connin, 1956). A single female can produce more than three million eggs in 60 d under ideal conditions (Navia et al., 2013). Aceria tosichella may cause complete leaf trapping when infestation occurs ABSTRACT Wheat curl mite (Aceria tosichella Keifer) is an important wheat (Triticum aestivum L. em. Thell.) pest in many wheat-growing regions worldwide. Mite feeding damage not only directly affects wheat yield, but A. tosichella also transmits
The development of alien addition lines is important for transferring useful genes from exotic species into common wheat. A hybrid of common wheat cv. 7182 (2n = 6x = 42, AABBDD) and Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) via embryo culture produced the novel intergeneric disomic addition line 59-11. The seed morphology of 59-11 resembled the parent 7182 and it exhibited extreme agronomic characteristics, i.e., twin stable spikelets, fertile florets, and multi-kernel clusters. Furthermore, 59-11 produced plump kernels with a high seed-setting percentage during the advanced maturation stage. The line was screened based on genomic in situ hybridization, EST-SSR, EST-STS, and gliadin to identify P. huashanica chromatin in the wheat background. The chromosome number and configuration of 59-11 was 2n = 44 = 22 II and we confirmed the 6Ns disomic chromosome additions based on A-PAGE analysis and molecular markers. The results suggested that the production of twin spikelets and multiple kernels per spike in the wheat-P. huashanica addition line was related to homologous group 6 in the wheat chromosome. This is the first report of the introduction of improved spike traits into common wheat from the alien species P. huashanica and it opens up the possibility of increasing the wheat yield based on this enlarged gene pool.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.