A novel high-capacity cathode material C4Q/CMK-3 for SIBs shows an initial discharge capacity of 438 mA h g−1 and a capacity retention of 219.2 mA h g−1 after 50 cycles.
Transformation thermodynamics, as one of the important branches among the extensions of transformation optics, has attracted plentiful attentions and interests recently. The result of transformation thermodynamics, or called as “thermal cloak”, can realize isothermal region and hide objects from heat. In this paper, we presented the concept of “reverse thermal cloak” to correspond to the thermal cloak and made a simple engineering definition to identify them. By full-wave simulations, we verified that the reverse thermal cloak can concentrate heat and realize local heating. The performance of local heating depends on the anisotropic dispersion of the cloaking layer's thermal conductivity. Three-dimensional finite element simulations demonstrated that the reverse thermal cloak can be used to heat up objects. Besides pre-engineered metamaterials, such reverse thermal cloak can even be realized with homogenous materials by alternating spoke-like structure or Hashin coated-sphere structure.
Organic lithium-ion batteries (OLIBs) represent a new generation of power storage approach for their environmental benignity and high theoretical specific capacities. However, it has the disadvantage with regard to the dissolution of active materials in organic electrolyte. In this study, we encapsulated high capacity material calix[4]quinone (C4Q) in the nanochannels of ordered mesoporous carbon (OMC) CMK-3 with various mass ratios ranging from 1:3 to 3:1, and then systematically investigated their morphology and electrochemical properties. The nanocomposites characterizations confirmed that C4Q is almost entirely capsulated in the nanosized pores of the CMK-3 while the mass ratio is less than 2:1. As cathodes in lithium-ion batteries, the C4Q/CMK-3 (1:2) nanocomposite exhibits optimal initial discharge capacity of 427 mA h g −1 with 58.7% cycling retention after 100 cycles. Meanwhile, the rate performance is also optimized with a capacity of 170.4 mA h g −1 at 1 C. This method paves a new way to apply organic cathodes for lithium-ion batteries.
Theranostic sonosensitizers with combined sonodynamic and near infrared (NIR) imaging modes are required for imaging guided sonodynamic therapy (SDT). It is challenging, however, to realize a single material that is simultaneously endowed with both NIR emitting and sonodynamic activities. Herein, we report the design of a class of NIR-emitting sonosensitizers from a NIR phosphorescent carbon dot (CD) material with a narrow bandgap (1.62 eV) and long-lived excited triplet states (11.4 μs), two of which can enhance SDT as thermodynamically and dynamically favorable factors under low-intensity ultrasound irradiation, respectively. The NIR-phosphorescent CDs are identified as bipolar quantum dots containing both p- and n-type surface functionalization regions that can drive spatial separation of e−–h+ pairs and fast transfer to reaction sites. Importantly, the cancer-specific targeting and high-level intratumor enrichment of the theranostic CDs are achieved by cancer cell membrane encapsulation for precision SDT with complete eradication of solid tumors by single injection and single irradiation. These results will open up a promising approach to engineer phosphorescent materials with long-lived triplet excited states for sonodynamic precision tumor therapy.
Novel catalysts of phosphotungstic heteropolyacids (PW 12 ) supported on neutral alumina were prepared by assistance of ultrasound and plasma treatment. The prepared catalysts were characterized by FT-IR pyridine adsorption (Py-IR), temperature programmed desorption of Pyridine (Py-TPD), BET and X-ray diffraction (XRD), and their catalytic performances were evaluated by the cationic polymerization of tetrahydrofuran. The results indicate that plasma treatment remarkably increases the surface acidity of the prepared catalyst while ultrasonic treatment induces PW 12 to uniformly disperse on the support surface and expose more active sites for the acid catalytic reaction. A higher catalytic activity (69.7%) is obtained on the novel catalyst, which signifi cantly outstripped that on the conventional sample (57.5%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.