Transforming growth factor-beta1 (TGF-β1) is a major factor in pathogenesis of chronic hepatic injury. Carbon tetrachloride (CCl4) is a liver toxicant, and CCl4-induced liver injury in mouse is a classical animal model of chemical liver injury. However, it is still unclear whether TGF-β1 is involved in the process of CCl4-induced acute chemical liver injury. The present study aimed to evaluate the role of TGF-β1 and its signaling molecule Smad3 in the acute liver injury induce by CCl4. The results showed that CCl4 induced acute liver injury in mice effectively confirmed by H&E staining of liver tissues, and levels of not only liver injury markers serum ALT and AST, but also serum TGF-β1 were elevated significantly in CCl4-treated mice, compared with the control mice treated with olive oil. Our data further revealed that TGF-β1 levels in hepatic tissue homogenate increased significantly, and type II receptor of TGF-β (TβRII) and signaling molecules Smad2, 3, mRNA expressions and Smad3 and phospho-Smad3 protein levels also increased obviously in livers of CCl4-treated mice. To clarify the effect of the elevated TGF-β1/Smad3 signaling on CCl4-induced acute liver injury, Smad3 in mouse liver was overexpressed in vivo by tail vein injection of Smad3-expressing plasmids. Upon CCl4 treatment, Smad3-overexpressing mice showed more severe liver injury identified by H&E staining of liver tissues and higher serum ALT and AST levels. Simultaneously, we found that Smad3-overexpressing mice treated with CCl4 showed more macrophages and neutrophils infiltration in liver and inflammatory cytokines IL-1β and IL-6 levels increment in serum when compared with those in control mice treated with CCl4. Moreover, the results showed that the apoptosis of hepatocytes increased significantly, and apoptosis-associated proteins Bax, cytochrome C and the cleaved caspase 3 expressions were up-regulated in CCl4-treated Smad3-overexpressing mice as well. These results suggested that TGF-β1/Smad3 signaling was activated during CCl4-induced acute liver injury in mice, and Smad3 overexpression aggravated acute liver injury by promoting inflammatory cells infiltration, inflammatory cytokines release and hepatocytes apoptosis. In conclusion, the activation of TGF-β signaling contributes to the CCl4-induced acute liver injury. Thus, TGF-β1/Smad3 may serve as a potential target for acute liver injury therapy.
Macrophages play critical roles in innate immune and acquired immune via secreting pro-inflammatory mediators, phagocytosing microorganisms and presenting antigens. Activin A, a member of transforming growth factor (TGF-) superfamily, is produced by macrophages and microglia cells. In this study, we reported a direct effect of activin A as a pro-inflammatory factor on mouse macrophage cell line RAW264.7 cells. Our data revealed that activin A could not only increase IL-1 and IL-6 production from RAW264.7 cells, but also promote pinocytic and phagocytic activities of RAW264.7 cells. In addition, activin A obviously up-regulated MHC II expression on the surface of RAW264.7 cells, whereas did not influence MHC I expression. Activin A also enhanced CD80 expression, which is a marker of activated macrophages, but did not influence RAW264.7 cell proliferation. These data suggest that activin A may regulate primary macrophage-mediated innate and acquired immune response via promoting the activation of rest macrophages. Cellular & Molecular Immunology. 2009;6(2):129-133.
These data show that activin A is involved in CCl4-induced acute liver injury. Blocking activin A actions may be a therapeutic approach for acute liver injury.
Activin A, a multifunctional factor of the transforming growth factor-beta (TGF-) superfamily, is mainly produced by microglia and macrophages, and its anti-inflammatory and pro-inflammatory activities are both related to macrophage functions. However the direct effect of activin A on the rest macrophages in vivo remains unclear. In the present study, the results showed that activin A not only increased NO and IL-1 release, but also promoted phagocytic abilities of mouse peritoneal macrophages in vitro and in vivo, whereas it did not influence MHC I and MHC II expression. Moreover, we found that activin A significantly upregulated the expressions of CD14 and CD68, markers of mature macrophages, on the surface of macrophages in vitro and in vivo. These data suggest that activin A can induce primary macrophage maturation in vitro and in vivo, but may not trigger the acquired immune response via regulating expression of MHC molecules involved in presentation of antigen.
BackgroundFollistatin (FST), a single chain glycoprotein, is originally isolated from follicular fluid of ovary. Previous studies have revealed that serum FST served as a biomarker for pregnancy and ovarian mucinous tumor. However, whether FST can serve as a biomarker for diagnosis in lung adenocarcinoma of humans remains unclear.Methods and ResultsThe study population consisted of 80 patients with lung adenocarcinoma, 40 patients with ovarian adenocarcinoma and 80 healthy subjects. Serum FST levels in patients and healthy subjects were measured using ELISA. The results showed that the positive ratio of serum FST levels was 51.3% (41/80), which was comparable to the sensitivity of FST in 40 patients with ovarian adenocarcinoma (60%, 24/40) using the 95th confidence interval for the healthy subject group as the cut-off value. FST expressions in lung adenocarcinoma were examined by immunohistochemical staining, we found that lung adenocarcinoma could produce FST and there was positive correlation between the level of FST expression and the differential degree of lung adenocarcinoma. Furthermore, the results showed that primary cultured lung adenocarcinoma cells could secrete FST, while cells derived from non-tumor lung tissues almost did not produce FST. In addition, the results of CCK8 assay and flow cytometry showed that using anti-FST monoclonal antibody to neutralize endogenous FST significantly augmented activin A-induced lung adenocarcinoma cells apoptosis.ConclusionsThese data indicate that lung adenocarcinoma cells can secret FST into serum, which may be beneficial to the survival of adenocarcinoma cells by neutralizing activin A action. Thus, FST can serve as a promising biomarker for diagnosis of lung adenocarcinoma and a useful biotherapy target for lung adenocarcinoma.
Activin A, a member of the transforming growth factor β (TGFβ) superfamily, plays an essential role in neuron survival as a neurotrophic and neuroprotective factor in the central nervous system. However, the effects and mechanisms of action of activin A on the neurite outgrowth of dorsal root ganglia (DRG) remain unclear. In the present study, we found that activin A is expressed in DRG collected from chicken embryos on embryonic day 8 (E8). Moreover, activin A induced neurite outgrowth of the primary cultured DRG and maintained the survival of monolayer-cultured DRG neurons throughout the observation period of ten days. Follistatin (FS), an activin-binding protein, significantly inhibited activin A-induced neurite outgrowth of DRG, but failed to influence the effect of nerve growth factor (NGF) on DRG neurite outgrowth. Furthermore, the results showed that activin A significantly upregulated mRNA expression of activin receptor type IIA (ActRIIA) and calcitonin gene-related peptide (CGRP) in DRG, and stimulated serotonin (5-HT) production from DRG, indicating that activin A might induce DRG neurite outgrowth by promoting CGRP expression and stimulating 5-HT release. These data suggest that activin A plays an important role in the development of DRG in an autocrine or paracrine manner.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.