Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapy was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.
A control technique is developed for a three-phase four-wire split dc bus inverter of a single distributed generation unit working in island mode. The control technique combines an inner discrete-time sliding mode controlled (DSMC) current loop and an outer robust servomechanism controlled voltage loop. The control algorithms are developed under stationary 0 (Clarke's) reference frame and a modified space vector pulsewidth modulation (MSVPWM) is proposed to implement the algorithm under Clarke's reference frame. The proposed technique achieves voltage regulation with low steady state error and low total harmonic distortion and fast transient response under various load disturbances. Meanwhile the usage of MSVPWM in a stationary 0 reference frame yields better transient performance under limited dc bus voltage compared to conventional uniformly sampled sine wave modulation in reference frame. In this paper, besides the development and description of the algorithms, a series of discussions, analysis and studies are performed on the proposed control technique, including the -filter design issue, frequency domain closed-current-loop and closed-voltage-loop responses, and time domain simulations and experiments under various load conditions. All the analysis, simulations, and experiments demonstrate the effectiveness of the proposed control solution.
Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from −70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.