CRC (cyclic redundancy check) concatenated polar codes are superior to the turbo codes under the successive cancellation list (SCL) or successive cancellation stack (SCS) decoding algorithms. But the code length of polar codes is limited to the power of two. In this paper, a family of rate-compatible punctured polar (RCPP) codes is proposed to satisfy the construction with arbitrary code length. We propose a simple qusiuniform puncturing algorithm to generate the puncturing table.And we prove that this method has better row-weight property than that of the random puncturing. Simulation results under the binary input additive white Gaussian noise channels (BI-AWGNs) show that these RCPP codes outperform the performance of turbo codes in WCDMA (Wideband Code Division Multiple Access) or LTE (Long Term Evolution) wireless communication systems in the large range of code lengths. Especially, the RCPP code with CRC-aided SCL/SCS algorithm can provide over 0.7dB performance gain at the block error rate (BLER) of 10 −4 with short code length M = 512 and code rate R = 0.5.
As improved versions of successive cancellation (SC) decoding algorithm,
successive cancellation list (SCL) decoding and successive cancellation stack
(SCS) decoding are used to improve the finite-length performance of polar
codes. Unified descriptions of SC, SCL and SCS decoding algorithms are given as
path searching procedures on the code tree of polar codes. Combining the ideas
of SCL and SCS, a new decoding algorithm named successive cancellation hybrid
(SCH) is proposed, which can achieve a better trade-off between computational
complexity and space complexity. Further, to reduce the complexity, a pruning
technique is proposed to avoid unnecessary path searching operations.
Performance and complexity analysis based on simulations show that, with proper
configurations, all the three improved successive cancellation (ISC) decoding
algorithms can have a performance very close to that of maximum-likelihood (ML)
decoding with acceptable complexity. Moreover, with the help of the proposed
pruning technique, the complexities of ISC decoders can be very close to that
of SC decoder in the moderate and high signal-to-noise ratio (SNR) regime.Comment: This paper is modified and submitted to IEEE Transactions on
Communication
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.