Mobile applications are becoming increasingly computation-intensive, while the computing capability of portable mobile devices is limited. A powerful way to reduce the completion time of an application in a mobile device is to offload its tasks to nearby cloudlets, which consist of clusters of computers. Although there is a significant body of research in mobile cloudlet offloading technology, there has been very little attention paid to how cloudlets should be placed in a given network to optimize mobile application performance. In this paper we study cloudlet placement and mobile user allocation to the cloudlets in a wireless metropolitan area network (WMAN). We devise an algorithm for the problem, which enables the placement of the cloudlets at user dense regions of the WMAN, and assigns mobile users to the placed cloudlets while balancing their workload. We also conduct experiments through simulation. The simulation results indicate that the performance of the proposed algorithm is very promising.
The contribution of cloud computing and mobile computing technologies lead to the newly emerging mobile cloud computing paradigm. Three major approaches have been proposed for mobile cloud applications: 1) extending the access to cloud services to mobile devices; 2) enabling mobile devices to work collaboratively as cloud resource providers; 3) augmenting the execution of mobile applications on portable devices using cloud resources. In this paper, we focus on the third approach in supporting mobile data stream applications. More specifically, we study how to optimize the computation partitioning of a data stream application between mobile and cloud to achieve maximum speed/throughput in processing the streaming data.
To the best of our knowledge, it is the first work to study the partitioning problem for mobile data stream applications, where the optimization is placed on achieving high throughput of processing the streaming data rather than minimizing the makespan of executions as in other applications. We first propose a framework to provide runtime support for the dynamic computation partitioning and execution of the application. Different from existing works, the framework not only allows the dynamic partitioning for a single user but also supports the sharing of computation instances among multiple users in the cloud to achieve efficient utilization of the underlying cloud resources. Meanwhile, the framework has better scalability because it is designed on the elastic cloud fabrics. Based on the framework, we design a genetic algorithm for optimal computation partition. Both numerical evaluation and real world experiment have been performed, and the results show that the partitioned application can achieve at least two times better performance in terms of throughput than the application without partitioning.
The most important issue that must be solved in designing a data gathering algorithm for wireless sensor networks (WSNS) is how to save sensor node energy while meeting the needs of applications/users. In this paper, we propose a novel energy-aware routing protocol (EAP) for a long-lived sensor network. EAP achieves a good performance in terms of lifetime by minimizing energy consumption for in-network communications and balancing the energy load among all the nodes. EAP introduces a new clustering parameter for cluster head election, which can better handle the heterogeneous energy capacities. Furthermore, it also introduces a simple but efficient approach, namely, intra-cluster coverage to cope with the area coverage problem. We use a simple temperature sensing application to evaluate the performance of EAP and results show that our protocol significantly outperforms LEACH and HEED in terms of network lifetime and the amount of data gathered.
Abstract-Coverage of interest points and network connectivity are two main challenging and practically important issues of Wireless Sensor Networks (WSNs). Although many studies have exploited the mobility of sensors to improve the quality of coverage and connectivity, little attention has been paid to the minimization of sensors' movement, which often consumes the majority of the limited energy of sensors and thus shortens the network lifetime significantly. To fill in this gap, this paper addresses the challenges of the Mobile Sensor Deployment (MSD) problem and investigates how to deploy mobile sensors with minimum movement to form a WSN that provides both target coverage and network connectivity. To this end, the MSD problem is decomposed into two sub-problems: the Target COVerage (TCOV) problem and the Network CONnectivity (NCON) problem. We then solve TCOV and NCON one by one and combine their solutions to address the MSD problem. The NP-hardness of TCOV is proved. For a special case of TCOV where targets disperse from each other farther than double of the coverage radius, an exact algorithm based on the Hungarian method is proposed to find the optimal solution. For general cases of TCOV, two heuristic algorithms, i.e., the Basic algorithm based on clique partition and the TV-Greedy algorithm based on Voronoi partition of the deployment region, are proposed to reduce the total movement distance of sensors. For NCON, an efficient solution based on the Steiner minimum tree with constrained edge length is proposed. The combination of the solutions to TCOV and NCON, as demonstrated by extensive simulation experiments, offers a promising solution to the original MSD problem that balances the load of different sensors and prolongs the network lifetime consequently.
Abstract-Elastic partitioning of computations between mobile devices and cloud is an important and challenging research topic for mobile cloud computing. Existing works focus on the single-user computation partitioning, which aims to optimize the application completion time for one particular single user. These works assume that the cloud always has enough resources to execute the computations immediately when they are offloaded to the cloud. However, this assumption does not hold for large scale mobile cloud applications. In these applications, due to the competition for cloud resources among a large number of users, the offloaded computations may be executed with certain scheduling delay on the cloud. Single user partitioning that does not take into account the scheduling delay on the cloud may yield significant performance degradation. In this paper, we study, for the first time, Multi-user Computation Partitioning Problem (MCPP), which considers the partitioning of multiple users' computations together with the scheduling of offloaded computations on the cloud resources. Instead of pursuing the minimum application completion time for every single user, we aim to achieve minimum average completion time for all the users, based on the number of provisioned resources on the cloud. We show that MCPP is different from and more difficult than the classical job scheduling problems. We design an offline heuristic algorithm, namely SearchAdjust, to solve MCPP. We demonstrate through benchmarks that SearchAdjust outperforms both the single user partitioning approaches and classical job scheduling approaches by 10% on average in terms of application delay. Based on SearchAdjust, we also design an online algorithm for MCPP that can be easily deployed in practical systems. We validate the effectiveness of our online algorithm using real world load traces.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.