Chaperonins cpn600cpn10~GroEL0GroES in Escherichia coli ! assist folding of nonnative polypeptides. Folding of the chaperonins themselves is distinct in that it entails assembly of a sevenfold symmetrical structure. We have characterized denaturation and renaturation of the recombinant human chaperonin 10~cpn10!, which forms a heptamer. Denaturation induced by chemical denaturants urea and guanidine hydrochloride~GuHCl! as well as by heat was monitored by tyrosine fluorescence, far-ultraviolet circular dichroism, and cross-linking; all denaturation reactions were reversible. GuHCl-induced denaturation was found to be cpn10 concentration dependent, in accord with a native heptamer to denatured monomer transition. In contrast, urea-induced denaturation was not cpn10 concentration dependent, suggesting that under these conditions cpn10 heptamers denature without dissociation. There were no indications of equilibrium intermediates, such as folded monomers, in either denaturant. The different cpn10 denatured states observed in high @GuHCl# and high @urea# were supported by cross-linking experiments. Thermal denaturation revealed that monomer and heptamer reactions display the same enthalpy change~per monomer!, whereas the entropy-increase is significantly larger for the heptamer. A thermodynamic cycle for oligomeric cpn10, combining chemical denaturation with the dissociation constant in absence of denaturant, shows that dissociated monomers are only marginally stable~3 kJ0mol!. The thermodynamics for co-chaperonin stability appears conserved; therefore, instability of the monomer could be necessary to specify the native heptameric structure.
The Escherichia coli Hsp40 DnaJ uses its J-domain to target substrate polypeptides for binding to the Hsp70 DnaK, but the mechanism of J-domain function has been obscured by a substrate-like interaction between DnaJ and DnaK. ATP hydrolysis in DnaK is associated with a conformational change that captures the substrate, and both DnaJ and substrate can stimulate ATP hydrolysis. However, substrates cannot trigger capture by DnaK in the presence of ATP, and substrates stimulate a DnaK conformational change that is uncoupled from ATP hydrolysis. The role of the J-domain was examined using the fluorescent derivative of a fusion protein composed of the J-domain and a DnaK-binding peptide. In the absence of ATP, DnaK-binding affinity of the fusion protein is similar to that of the unfused peptide. However, in the presence of ATP, the affinity of the fusion protein is dramatically increased, which is opposite to the decrease in DnaK affinity typically exhibited by peptides. Binding of a fusion protein that contains a defective J-domain is insensitive to ATP. According to results from isothermal titration calorimetry, the J-domain binds to the DnaK ATPase domain with weak affinity (K(D) = 23 microM at 20 degrees C). The interaction is characterized by a positive enthalpy, small heat capacity change (DeltaC(p)= -33 kcal mol(-1)), and increasing binding affinity for increasing temperatures in the physiological range. In conditions that support binding of the J-domain to the ATPase domain, the J-domain accelerates ATP hydrolysis and a simultaneous conformational change in DnaK that is associated with peptide capture. The defective J-domain is inactive, despite the fact that it binds to the DnaK ATPase domain with higher than wild-type affinity. The results are most consistent with an allosteric mechanism of J-domain action in which the J-domain couples ATP hydrolysis to peptide capture by accelerating ATP hydrolysis and delaying DnaK closure until ATP is hydrolyzed.
Sex differences in mitochondrial numbers and function are present in large cerebral arteries, but it is unclear whether these differences extend to the microcirculation. We performed an assessment of mitochondria-related proteins in cerebral microvessels (MVs) isolated from young, male and female, Sprague-Dawley rats. MVs composed of arterioles, capillaries, and venules were isolated from the cerebrum and used to perform a 3 versus 3 quantitative, multiplexed proteomics experiment utilizing tandem mass tags (TMT), coupled with liquid chromatography/mass spectrometry (LC/MS). MS data and bioinformatic analyses were performed using Proteome Discoverer version 2.2 and Ingenuity Pathway Analysis. We identified a total of 1969 proteins, of which 1871 were quantified by TMT labels. Sixty-four proteins were expressed significantly ( p < 0.05) higher in female samples compared with male samples. Females expressed more mitochondrial proteins involved in energy production, mitochondrial membrane structure, anti-oxidant enzyme proteins, and those involved in fatty acid oxidation. Conversely, males had higher expression levels of mitochondria-destructive proteins. Our findings reveal, for the first time, the full extent of sexual dimorphism in the mitochondrial metabolic protein profiles of MVs, which may contribute to sex-dependent cerebrovascular and neurological pathologies.
Pseudomonas aeruginosa azurin binds copper so tightly that it remains bound even upon polypeptide unfolding. Copper can be substituted with zinc without change in protein structure, and also in this complex the metal remains bound upon protein unfolding. Previous work has shown that native-state copper ligands Cys112 and His117 are two of at least three metal ligands in the unfolded state. In this study we use isothermal titration calorimetry and spectroscopic methods to test if the native-state ligand Met121 remains a metal ligand upon unfolding. From studies on a point-mutated version of azurin (Met121Ala) and a set of model peptides spanning the copper-binding C-terminal part (including Cys112, His117 and Met121), we conclude that Met121 is a metal ligand in unfolded copper-azurin but not in the case of unfolded zinc-azurin. Combination of unfolding and metal-titration data allow for determination of copper (Cu(II) and Cu(I)) and zinc affinities for folded and unfolded azurin polypeptides, respectively.
The role of receptor binding in the toxicity, immunogenicity, and adjuvanticity of the heat-labile enterotoxin of Escherichia coli (LT) was examined by comparing native LT and LT(G33D), a B-subunit receptor binding mutant, with respect to the ability to bind to galactose and to GM1, toxicity on mouse Y-1 adrenal tumor cells, the ability to stimulate adenylate cyclase in Caco-2 cells, enterotoxicity in the patent mouse model, and oral immunogenicity and adjuvanticity. In contrast to native LT, LT(G33D) was unable to bind to the galactosyl moiety of Sepharose 4B or GM1 but did retain the lectin-like ability to bind to immobilized galactose on 6% agarose beads. LT(G33D) had no enterotoxicity in the patent mouse model but exhibited residual toxicity on mouse Y-1 adrenal tumor cells and had an ability equivalent to that of native LT to stimulate adenylate cyclase in Caco-2 cells (5,000 versus 6,900 pmol per mg of protein). In addition, LT(G33D) was unable to serve as an effective oral adjuvant for induction of immunoglobulin G or A directed against a coadministered antigen. Furthermore, LT(G33D) elicited negligible serum and mucosal antibody responses against itself. These data indicate that the toxicity, immunogenicity, and oral adjuvanticity of LT are dependent upon binding of the B subunit to ganglioside GM1.
Sex is an important determinant of brain microvessels (MVs) function and susceptibility to cerebrovascular and neurological diseases, but underlying mechanisms are unclear. Using high throughput RNA sequencing analysis, we examined differentially expressed (DE) genes in brain MVs from young, male, and female rats. Bioinformatics analysis of the 23,786 identified genes indicates that 298 (1.2%) genes were DE using False Discovery Rate criteria (FDR; p < 0.05), of which 119 (40%) and 179 (60%) genes were abundantly expressed in male and female MVs, respectively. Nucleic acid binding, enzyme modulator, and transcription factor were the top three DE genes, which were more highly expressed in male than female MVs. Synthesis of glycosylphosphatidylinositol (GPI), biosynthesis of GPI-anchored proteins, steroid and cholesterol synthesis, were the top three significantly enriched canonical pathways in male MVs. In contrast, respiratory chain, ribosome, and 3 ́-UTR-mediated translational regulation were the top three enriched canonical pathways in female MVs. Different gene functions of MVs were validated by proteomic analysis and western blotting. Our novel findings reveal major sex disparities in gene expression and canonical pathways of MVs and these differences provide a foundation to study the underlying mechanisms and consequences of sex-dependent differences in cerebrovascular and other neurological diseases.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers