Summary Carbon nanotubes have fibre-like shape1 and stimulate inflammation at the surface of the peritoneum when injected into the abdominal cavity of mice2, raising concerns that inhaled nanotubes3 may cause pleural fibrosis and/or mesothelioma4. Here we show that multi-walled carbon nanotubes reach the sub-pleura in mice after a single inhalation exposure of 30 mg/m3 for 6 hours. Nanotubes were embedded in the sub-pleural wall and within sub-pleural macrophages. Mononuclear cell aggregates on the pleural surface increased in number and size after 1 day and nanotube-containing macrophages were observed within these foci. Sub-pleural fibrosis increased after 2 and 6 weeks following inhalation. None of these effects were seen in mice that inhaled carbon black nanoparticles or a lower dose of nanotubes (1 mg/m3). This work advances a growing literature on pulmonary toxicology of nanotubes5 and suggests that minimizing inhalation of nanotubes during handling is prudent until further long term assessments are conducted.
Quantum dot (QD) nanoparticles have potential applications in nanomedicine as drug delivery vectors and diagnostic agents, but the skin toxicity and irritation potential of QDs are unknown. Human epidermal keratinocytes (HEKs) were used to assess if QDs with different surface coatings would cause differential effects on HEK cytotoxicity, proinflammatory cytokine release, and cellular uptake. Commercially available QDs of two different sizes, QD 565 and QD 655, with neutral (polyethylene glycol (PEG)), cationic (PEG-amine), or anionic (carboxylic acid) coatings were utilized. Live cell imaging and transmission electron microscopy were used to determine that all QDs localized intracellularly by 24 hours, with evidence of QD localization in the nucleus. Cytotoxicity and release of the proinflammatory cytokines IL-1beta, IL-6, IL-8, IL-10, and tumor necrosis factor-alpha were assessed at 24 and 48 hours. Cytotoxicity was observed for QD 565 and QD 655 coated with carboxylic acids or PEG-amine by 48 hours, with little cytotoxicity observed for PEG-coated QDs. Only carboxylic acid-coated QDs significantly increased release of IL-1beta, IL-6, and IL-8. These data indicate that QD surface coating is a primary determinant of cytotoxicity and immunotoxicity in HEKs, which is consistent across size. However, uptake of QDs by HEKs is independent of surface coating.
Skin is the largest organ of the body and is a potential route of exposure to engineered nanomaterials, but the permeability of the skin to these nanomaterials is unknown. We selected commercially available quantum dots (QD) of two core/shell sizes and shapes and three different surface coatings to determine if QD could penetrate intact skin in a size- or coating-dependent manner. Spherical 4.6 nm core/shell diameter QD 565 and ellipsoid 12 nm (major axis) by 6 nm (minor axis) core/shell diameter QD 655 with neutral (polyethylene glycol), anionic (carboxylic acids) or cationic (polyethylene glycol-amine) coatings were topically applied to porcine skin in flow-through diffusion cells at an occupationally relevant dose for 8 h and 24 h. Confocal microscopy revealed that spherical QD 565 of each surface coating penetrated the stratum corneum and localized within the epidermal and dermal layers by 8 h. Similarly, polyethylene glycol- and polyethylene glycol-amine-coated ellipsoid QD 655 localized within the epidermal layers by 8 h. No penetration of carboxylic acid-coated QD 655 was evident until 24 h, at which time localization in the epidermal layers was observed. This study showed that quantum dots of different sizes, shapes, and surface coatings can penetrate intact skin at an occupationally relevant dose within the span of an average-length work day. These results suggest that skin is surprisingly permeable to nanomaterials with diverse physicochemical properties and may serve as a portal of entry for localized, and possibly systemic, exposure of humans to QD and other engineered nanoscale materials.
Carbon nanotubes are gaining increasing attention due to possible health risks from occupational or environmental exposures. This study tested the hypothesis that inhaled multiwalled carbon nanotubes (MWCNT) would increase airway fibrosis in mice with allergic asthma. Normal and ovalbumin-sensitized mice were exposed to a MWCNT aerosol (100 mg/m(3)) or saline aerosol for 6 hours. Lung injury, inflammation, and fibrosis were examined by histopathology, clinical chemistry, ELISA, or RT-PCR for cytokines/chemokines, growth factors, and collagen at 1 and 14 days after inhalation. Inhaled MWCNT were distributed throughout the lung and found in macrophages by light microscopy, but were also evident in epithelial cells by electron microscopy. Quantitative morphometry showed significant airway fibrosis at 14 days in mice that received a combination of ovalbumin and MWCNT, but not in mice that received ovalbumin or MWCNT only. Ovalbumin-sensitized mice that did not inhale MWCNT had elevated levels IL-13 and transforming growth factor (TGF)-beta1 in lung lavage fluid, but not platelet-derived growth factor (PDGF)-AA. In contrast, unsensitized mice that inhaled MWCNT had elevated PDGF-AA, but not increased levels of TGF-beta1 and IL-13. This suggested that airway fibrosis resulting from combined ovalbumin sensitization and MWCNT inhalation requires PDGF, a potent fibroblast mitogen, and TGF-beta1, which stimulates collagen production. Combined ovalbumin sensitization and MWCNT inhalation also synergistically increased IL-5 mRNA levels, which could further contribute to airway fibrosis. These data indicate that inhaled MWCNT require pre-existing inflammation to cause airway fibrosis. Our findings suggest that individuals with pre-existing allergic inflammation may be susceptible to airway fibrosis from inhaled MWCNT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.