Throughout the history of wireless communications, spatial antenna diversity has been important in improving the radio link between wireless users. Historically, microscopic antenna diversity has been used to reduce the fading seen by a radio receiver, whereas macroscopic diversity provides multiple listening posts to ensure that mobile communication links remain intact over a wide geographic area. In recent years, the concepts of spatial diversity have been expanded to build foundations for emerging technologies, such as smart (adaptive) antennas and position location systems. Smart antennas hold great promise for increasing the capacity of wireless communications because they radiate and receive energy only in the intended directions, thereby greatly reducing interference. To properly design, analyze, and implement smart antennas and to exploit spatial processing in emerging wireless systems, accurate radio channel models that incorporate spatial characteristics are necessary. In this tutorial, we review the key concepts in spatial channel modeling and present emerging approaches. We also review the research issues in developing and using spatial channel models for adaptive antennas.
With recent advances in wireless communications and low-power electronics, accurate position location may now be accomplished by a number of techniques which involve commercial wireless services. Emerging position location systems, when used in conjunction with mobile communications services, will lead to enhanced public safety and revolutionary products and services. The fundamental technical challenges and business motivations behind wireless position location systems are described in this article, and promising techniques for solving the practical position location problem are treated.
In this paper, we develop a statistical geometric propagation model for a macrocell mobile environment that provides the statistics of angle-of-arrival (AOA) of the multipath components, which are required to test adaptive array algorithms for cellular applications. This channel model assumes that each multipath component of the propagating signal undergoes only one bounce traveling from the transmitter to the receiver and that scattering objects are located uniformly within a circle around the mobile. This geometrically based single bounce macrocell (GBSBM) channel model provides three important parameters that characterize a channel: the power of the multipath components, the time-of-arrival (TOA) of the components, and the AOA of the components. Using the GBSBM model, we analyze the effect of directional antennas at the base station on the fading envelopes. The level crossing rate of the fading envelope is reduced and the envelope correlation increases significantly if a directional antenna is employed at the base station.
With the introduction of antenna array systems into wireless communication networks comes the need to better understand the spatial characteristics of the channel. Scattering models provide both angle of arrival (AOA) and time of arrival (TOA) statistics of the channel. A number of different scattering models have been proposed in the literature including elliptical and circular models. These models assume that scatterers lie within an elliptical and circular region in space, respectively. In this paper, the joint TOA/AOA, the marginal TOA, and the marginal AOA probability density functions (pdf's) are derived for the elliptical and circular scattering models. These pdf's provide insight into the properties of the spatial wireless channel.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.