BackgroundThe rapid evolution of 454 GS-FLX sequencing technology has not been accompanied by a reassessment of the quality and accuracy of the sequences obtained. Current strategies for decision-making and error-correction are based on an initial analysis by Huse et al. in 2007, for the older GS20 system based on experimental sequences. We analyze here the quality of 454 sequencing data and identify factors playing a role in sequencing error, through the use of an extensive dataset for Roche control DNA fragments.ResultsWe obtained a mean error rate for 454 sequences of 1.07%. More importantly, the error rate is not randomly distributed; it occasionally rose to more than 50% in certain positions, and its distribution was linked to several experimental variables. The main factors related to error are the presence of homopolymers, position in the sequence, size of the sequence and spatial localization in PT plates for insertion and deletion errors. These factors can be described by considering seven variables. No single variable can account for the error rate distribution, but most of the variation is explained by the combination of all seven variables.ConclusionsThe pattern identified here calls for the use of internal controls and error-correcting base callers, to correct for errors, when available (e.g. when sequencing amplicons). For shotgun libraries, the use of both sequencing primers and deep coverage, combined with the use of random sequencing primer sites should partly compensate for even high error rates, although it may prove more difficult than previous thought to distinguish between low-frequency alleles and errors.
In healthy, middle-aged, moderately overweight men, orange juice decreases DBP when regularly consumed and postprandially increases endothelium-dependent microvascular reactivity. Our study suggests that hesperidin could be causally linked to the beneficial effect of orange juice. This trial is registered at clinicaltrials.gov as NCT00983086.
Microsatellites (or SSRs: simple sequence repeats) are among the most frequently used DNA markers in many areas of research. The use of microsatellite markers is limited by the difficulties involved in their de novo isolation from species for which no genomic resources are available. We describe here a high-throughput method for isolating microsatellite markers based on coupling multiplex microsatellite enrichment and next-generation sequencing on 454 GS-FLX Titanium platforms. The procedure was calibrated on a model species (Apis mellifera) and validated on 13 other species from various taxonomic groups (animals, plants and fungi), including taxa for which severe difficulties were previously encountered using traditional methods. We obtained from 11,497 to 34,483 sequences depending on the species and the number of detected microsatellite loci ranged from 199 to 5791. We thus demonstrated that this procedure can be readily and successfully applied to a large variety of taxonomic groups, at much lower cost than would have been possible with traditional protocols. This method is expected to speed up the acquisition of high-quality genetic markers for nonmodel organisms.
It has become clear from national surveys, both in Britain and elsewhere, that the attitudes of the mass public towards social and political issues tend to group together in broadly predictable ways. Analyses of British Election Study data have consistently found that attitudes towards economic issues such as nationalization, income redistribution and government intervention go together and are largely unrelated to attitudes towards moral issues. There are of course variations in the results, depending on the items included for analysis, but it has become apparent that a rather persistent attitudinal structure, at least at the aggregate level, has characterized the British electorate. Similar findings have been reported for the United States.
Microsatellite marker development has been greatly simplified by the use of high-throughput sequencing followed by in silico microsatellite detection and primer design. However, the selection of markers designed by the existing pipelines depends either on arbitrary criteria, or older studies on PCR success. Based on wet laboratory experiments, we have identified the following factors that are most likely to influence genotyping success rate: alignment score between the primers and the amplicon; the distance between primers and microsatellites; the length of the PCR product; target region complexity and the number of reads underlying the sequence. The QDD pipeline has been modified to include these most pertinent factors in the output to help the selection of markers. Furthermore, new features are also included in the present version: (i) not only raw sequencing reads are accepted as input, but also contigs, allowing the analysis of assembled high-coverage data; (ii) input data can be both in fasta and fastq format to facilitate the use of Illumina and IonTorrent reads; (iii) A comparison to known transposable elements allows their detection; (iv) A contamination check can be carried out by BLASTing potential markers against the nucleotide (nt) database of NCBI; (v) QDD3 is now also available imbedded into a virtual machine making installation easier and operating system independent. It can be used both on command-line version as well as integrated into a Galaxy server, providing a user-friendly interface, as well as the possibility to utilize a large variety of NGS tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.