SUMMARY Cellular senescence suppresses cancer by halting the growth of premalignant cells, yet the accumulation of senescent cells is thought to drive age-related pathology through a senescence-associated secretory phenotype (SASP), the function of which is unclear. To understand the physiological role(s) of the complex senescent phenotype, we generated a mouse model in which senescent cells can be visualized and eliminated in living animals. We show that senescent fibroblasts and endothelial cells appear very early in response to a cutaneous wound, where they accelerate wound closure by inducing myofibroblast differentiation through the secretion of platelet-derived growth factor AA (PDGF-AA). In two mouse models, topical treatment of senescence-free wounds with recombinant PDGF-AA rescued the delayed wound closure and lack of myofibroblast differentiation. These findings define a beneficial role for the SASP in tissue repair and help to explain why the SASP evolved.
XPF-ERCC1 endonuclease is required for repair of helix-distorting DNA lesions and cytotoxic DNA interstrand crosslinks. Mild mutations in XPF cause the cancer-prone syndrome xeroderma pigmentosum. A patient presented with a severe XPF mutation leading to profound crosslink sensitivity and dramatic progeroid symptoms. It is not known how unrepaired DNA damage accelerates ageing or its relevance to natural ageing. Here we show a highly significant correlation between the liver transcriptome of old mice and a mouse model of this progeroid syndrome. Expression data from XPF-ERCC1-deficient mice indicate increased cell death and anti-oxidant defences, a shift towards anabolism and reduced growth hormone/insulin-like growth factor 1 (IGF1) signalling, a known regulator of lifespan. Similar changes are seen in wild-type mice in response to chronic genotoxic stress, caloric restriction, or with ageing. We conclude that unrepaired cytotoxic DNA damage induces a highly conserved metabolic response mediated by the IGF1/insulin pathway, which re-allocates resources from growth to somatic preservation and life extension. This highlights a causal contribution of DNA damage to ageing and demonstrates that ageing and end-of-life fitness are determined both by stochastic damage, which is the cause of functional decline, and genetics, which determines the rates of damage accumulation and decline.
Recent progress in the science of aging is driven largely by the use of model systems, ranging from yeast and nematodes to mice. These models have revealed conservation in genetic pathways that balance energy production and its damaging by-products with pathways that preserve somatic maintenance. Maintaining genome integrity has emerged as a major factor in longevity and cell viability. Here we discuss the use of mouse models with defects in genome maintenance for understanding the molecular basis of aging in humans.
The workshop entitled ‘Interventions to Slow Aging in Humans: Are We Ready?’ was held in Erice, Italy, on October 8–13, 2013, to bring together leading experts in the biology and genetics of aging and obtain a consensus related to the discovery and development of safe interventions to slow aging and increase healthy lifespan in humans. There was consensus that there is sufficient evidence that aging interventions will delay and prevent disease onset for many chronic conditions of adult and old age. Essential pathways have been identified, and behavioral, dietary, and pharmacologic approaches have emerged. Although many gene targets and drugs were discussed and there was not complete consensus about all interventions, the participants selected a subset of the most promising strategies that could be tested in humans for their effects on healthspan. These were: (i) dietary interventions mimicking chronic dietary restriction (periodic fasting mimicking diets, protein restriction, etc.); (ii) drugs that inhibit the growth hormone/IGF-I axis; (iii) drugs that inhibit the mTOR–S6K pathway; or (iv) drugs that activate AMPK or specific sirtuins. These choices were based in part on consistent evidence for the pro-longevity effects and ability of these interventions to prevent or delay multiple age-related diseases and improve healthspan in simple model organisms and rodents and their potential to be safe and effective in extending human healthspan. The authors of this manuscript were speakers and discussants invited to the workshop. The following summary highlights the major points addressed and the conclusions of the meeting.
The germline mutation rate has been extensively studied and has been found to vary greatly between species, but much less is known about the somatic mutation rate in multicellular organisms, which remains very difficult to determine. Here, we present data on somatic mutation rates in mice and humans, obtained by sequencing single cells and clones derived from primary fibroblasts, which allows us to make the first direct comparison with germline mutation rates in these two species. The results indicate that the somatic mutation rate is almost two orders of magnitude higher than the germline mutation rate and that both mutation rates are significantly higher in mice than in humans. Our findings demonstrate both the privileged status of germline genome integrity and species-specific differences in genome maintenance.
DNA repair-deficient Ercc1Δ/− mice show numerous accelerated aging features limiting lifespan to 4–6 month1–4. Simultaneously they exhibit a ‘survival response’, which suppresses growth and enhances maintenance, resembling the anti-aging response induced by dietary restriction (DR)1,5. Here we report that subjecting these progeroid, dwarf mutants to 30% DR tripled median and maximal remaining lifespan, and drastically retarded numerous aspects of accelerated aging, e.g. DR animals retained 50% more neurons and maintained full motoric function, even far beyond the lifespan of ad libitum (AL) animals. Repair-deficient, progeroid Xpg−/− mice, a Cockayne syndrome model6, responded similarly, extending this observation to other repair mutants. The DR response in Ercc1Δ/− mice closely resembled DR in wild type animals. Interestingly, AL Ercc1Δ/− liver showed preferential extinction of expression of long genes, a phenomenon we also observe in several normal aging tissues. This is consistent with accumulation of stochastic, transcription-blocking lesions, affecting long genes more than short ones. DR largely prevented declining transcriptional output and reduced γH2AX DNA damage foci, indicating that DR preserves genome function by alleviating DNA damage. Our findings establish Ercc1Δ/− mice as powerful model for interventions sustaining health, reveal untapped potential for reducing endogenous damage, provide new venues for understanding the molecular mechanism of DR, and suggest a counterintuitive DR-like therapy for human progeroid genome instability syndromes and possibly neurodegeneration in general.
Recent discoveries in the science of ageing indicate that lifespan in model organisms such as yeast, nematodes, flies and mice is plastic and can be manipulated by genetic, nutritional or pharmacological intervention. A better understanding of the targets of such interventions, as well as the proximate causes of ageing-related degeneration and disease, is essential before we can evaluate if abrogation of human senescence is a realistic prospect.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers