Abstract. In this paper we prove two sharp inequalities involving the normalized scalar curvature and the generalized normalized δ-Casorati curvatures for slant submanifolds in quaternionic space forms. We also characterize those submanifolds for which the equality cases hold. These results are a generalization of some recent results concerning the Casorati curvature for a slant submanifold in a quaternionic space form obtained by Slesar et al.: J. Inequal. Appl. 2014
In this paper, we prove two optimal inequalities involving the intrinsic scalar curvature and extrinsic Casorati curvature of submanifolds of real space forms endowed with a semi-symmetric metric connection. Moreover, we show that in both cases, the equality at all points characterizes the invariantly quasi-umbilical submanifolds. MSC: 53C40; 53B05
Abstract. In this paper, we prove two optimal inequalities involving the intrinsic scalar curvature and extrinsic Casorati curvature of submanifolds of generalized space forms endowed with a semi-symmetric metric connection. Moreover, we also characterize those submanifolds for which the equality cases hold.
With a pair of conjugate connections ∇ and ∇ * , we derive optimal Casorati inequalities with the normalized scalar curvature on submanifolds of a statistical manifold of constant curvature.
Abstract. The purpose of this paper is to study pointwise slant submersions from almost Hermitian manifolds which extends slant submersion in a natural way. Several basic results in this point of view are proven in this paper.
In this paper, we study submanifolds in a Euclidean space with a generalized 1-type Gauss map. The Gauss map, G, of a submanifold in the n-dimensional Euclidean space, En, is said to be of generalized 1-type if, for the Laplace operator, Δ, on the submanifold, it satisfies ΔG=fG+gC, where C is a constant vector and f and g are some functions. The notion of a generalized 1-type Gauss map is a generalization of both a 1-type Gauss map and a pointwise 1-type Gauss map. With the new definition, first of all, we classify conical surfaces with a generalized 1-type Gauss map in E3. Second, we show that the Gauss map of any cylindrical surface in E3 is of the generalized 1-type. Third, we prove that there are no tangent developable surfaces with generalized 1-type Gauss maps in E3, except planes. Finally, we show that cylindrical hypersurfaces in En+2 always have generalized 1-type Gauss maps.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.