The contribution details a post-processing approach that uses undifferenced dual-frequency pseudorange and carrier phase observations along with IGS precise orbit products, for stand-alone precise geodetic point positioning (static or kinematic) with cm precision. This is possible if one takes advantage of the satellite clock estimates available with the satellite coordinates in the IGS precise orbit products and models systematic effects that cause cm variations in the satellite to user range. This paper will describe the approach, summarize the adjustment procedure, and specify the earth-and space-based models that must be implemented to achieve cm-level positioning in static mode. Furthermore, station tropospheric zenith path delays with cm precision and GPS receiver clock estimates precise to 0.1 ns are also obtained.
A simplified yaw-attitude modeling, consistent with Bar-Sever (1996), has been implemented and tested in the NRCan PPP software. For Block IIR GPS satellite it is possible to model yaw-attitude control during eclipsing periods by using the constant hardware yaw rate of 0.20°/s. The Block IIR satellites maintain the nominal yaw attitude even during a shadow crossing (Y. E. Bar-Sever, private communication, 2007), except for the noon and shadow midnight turn maneuvers, both of which can be modeled and last up to 15 min. Thus, for Block IIR satellites it is possible to maintain continuous satellite clock estimation even during eclipsing periods. For the Block II/IIA satellites, it is possible to model satisfactorily the noon turns and also shadow crossing, thanks to the permanent positive yaw bias of 0.5°, implemented in November 1995. However, in order to model the Block II/IIA shadow crossings, satellite specific yaw rates should be used, either solved for or averaged yaw-rate solutions. These yaw rates as estimated by the Jet Propulsion Laboratory (JPL) can differ significantly from the nominal hardware values. The Block II/IIA post-shadow recovery periods, which last about 30 min, should be considered uncertain and cannot be properly modeled. Data from post-shadow recovery periods should, therefore, not be used in precise global GPS analyses (BarSever 1996). For high-precision applications, it is essential that users implement a yaw-attitude model, which is consistent with the generation of the satellite clocks. Initial testing and analyses, based on the IGS and AC Final orbits and clocks have revealed that during eclipsing periods, significant inconsistencies in yaw-attitude modeling still exist amongst the IGS Analyses Centers, which contribute to the errors of the IGS Final clock combinations.
a new clock combination program was developed. The program allows for the input of both SP3 and the new clock (RINEX) format (ftp://igscb.jpl.nasa.gov//igscb/data/format/rinex_clock.txt). The main motivation for this new development is the realization of the goals of the IGS/BIPM timing project. Besides this there is a genuine interest in station clocks and a need for a higher sampling rate of the IGS clocks (currently limited to 15 min due to the SP3 format). The inclusion of station clocks should also allow for a better alignment of the individual AC solutions and should enable the realization of a stable GPS time-scale. For each input AC clock solution the new clock combination solves and corrects for reference clock errors/instabilities as well as satellite/station biases, geocenter and station!satellite orbit errors. External station clock calibrations and/or constraints, such as those resulting from the IGS/BIPM timing pilot project, can be introduced via a subset of the fiducial timing station set, to facilitate a precise and consistent IGS UTC realization for both station and satellite combined clock solutions. Furthermore, the new clock combination process enforces strict conformity and consistency with the current and future IGS standards. The new clock combination maintains orbit/clock consistency at millimeter level, which is comparable to the best AC orbit/clock solutions. This is demonstrated by static GIPSY precise point positioning tests using GPS week
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.