TSPY, the 'testis-specific protein, Y-encoded', is the product of a tandem gene cluster on human proximal Yp. In order to gain insight into the function of this locus, we have analysed (I) the diversity of RNAs transcribed from the cluster, (II) the sequence homology of the deduced TSPY to other proteins, and (iii) its protein properties both in tissue extracts and in tissue sections, using a TSPY-specific antiserum. We have identified a set of distinct TSPY transcripts with diverse exon compositions. We show that TSPY has homology with other human and non-human proteins, including SET and NAP, factors that are suggested to play a role in DNA replication. Protein analysis revealed TSPY to occur mainly in a modified, putatively phosphorylated form. By immunostaining it was detected in distinct subsets of spermatogonia. TSPY was also strongly immunostained in early testicular carcinoma in situ (CIS), while seminomatous tumour cells stained less intensely. The spermatogonial cells of two XY-TFM-females gave a strong immune response. The data presented here point to a phosphorylation-dependent TSPY-function in early spermatogenesis, immediately prior to the spermatogonia-to-spermatocyte transition, and in early testicular tumorigenesis.
Sequences within the long terminal repeat region (LTR) of mouse mammary tumour virus (MMTV) confer progestin inducibility to either the tk‐promoter or the MMTV‐promoter in T47D cells, a human mammary tumour cell line which possesses high constitutive levels of progesterone receptor. In a clone of MCF7 cells, another human mammary tumour cell line with a low level of progesterone receptor, as well as in rat fibroblasts, glucocorticoid but not progestin induction is observed. The effect of the progesterone analogue R5020 is much more pronounced than the effect of dexamethasone, and at the concentrations required for maximal induction, R5020 does not significantly compete with binding of dexamethasone to the glucocorticoid receptor. In conjunction with previous results on the DNA binding of the glucocorticoid and progesterone receptors, these data show that two different steroid hormones, acting through their respective receptors, can mediate the induction of gene expression by interacting with the same DNA sequences. Our results suggest that the hormone regulatory element of MMTV may primarily be a progesterone‐responsive element in mammary cells.
Patients with disorders involving imprinted genes such as Angelman syndrome (AS) and Prader-Willi syndrome (PWS) can have a mutation in the imprinting mechanism. Previously, we identified an imprinting center (IC) within chromosome 15q11-ql3 and proposed that IC mutations block resetting of the imprint, fixing on that chromosome the parental imprint (epigenotype) on which the mutation arose. We now describe four new microdeletions of the IC, the smallest (6 kb) of which currently defines the minimal region sufficient to confer an AS imprinting mutation. The AS deletions all overlap this minimal region, centromeric to the PWS microdeletions, which include the first exon of the SNRPN gene. None of five genes or transcripts in the 1.0 Mb vicinity of the IC (ZNF127, SNRPN, PAR-5, IPW, and PAR-1), each normally expressed only from the paternal allele, was expressed in cells from PWS imprinting mutation patients. In contrast, AS imprinting mutation patients show biparental expression of SNRPN and IPW but must lack expression of the putative AS gene 250-1000 kb distal of the IC. These data strongly support a model in which the paternal chromosome of these PWS patients carries an ancestral maternal epigenotype, and the maternal chromosome of these AS patients carries an ancestral paternal epigenotype. The IC therefore functions to reset the maternal and paternal imprints throughout a 2-Mb imprinted domain within human chromosome 15q11-q13 during gametogenesis.
The human genome contains a large number of interspersed simple repeat sequences that are variable in length and can therefore serve as highly informative, polymorphic markers. Typing procedures include conventional multilocus and single locus probing, and polymerase chain reaction aided analysis. We have identified simple sequences in a cosmid clone stemming from the human Y chromosome and consisting of (gata)n repeats. We have compared these with two equivalent simple repeat loci from chromosome 12. After amplifying the tandemly repeated motifs, we detected between four and eight different alleles at each of the three loci. Codominant inheritance of the alleles was established in family studies and the informativity of the simple repeat loci was determined by typing unrelated individuals. The polymorphisms are suitable for application in linkage studies, practical forensic case work, deficiency cases in paternity determination, and for studying ethnological questions. The mutational mechanisms that bring about changes in simple repeats located both on the autosomes and on the sex chromosomes, are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.