A mathematical theory is developed through generalized Sundman transformation to show the existence of classes of quadratic Liénard type equations which admit exact and explicit general trigonometric solutions but with amplitude-dependent frequency. The application of the theory to compute also exact and explicit general periodic solutions to nonlinear differential equations like inverted Painlevé-Gambier equations in terms of trigonometric or Jacobian elliptic functions is highlighted by some illustrative examples.
<abstract><p>In the attractive research field of nonlinear differential equations, there are a few studies devoted to finding exact and explicit harmonic and isochronous periodic solutions and limit cycles. In this contribution, we present some classes of polynomial mixed Lienard-type differential equations that can generate many equations with exact solutions. These classes of equations constitute counterexamples of the classical existence theorems.</p></abstract>
In this paper we study a Lienard equation without restoring force. Although this equation does not satisfy the classical existence theorems, we show, for the first time, that such an equation can exhibit harmonic periodic solutions. As such the usual existence theorems are not entirely adequate and satisfactory to predict the existence of periodic solutions.
In this paper, we present an exceptional Lienard equation consisting of a modified Van der Pol-Helmholtz oscillator equation. The equation, a frequency-dependent damping oscillator, does not satisfy the classical existence theorems but, nevertheless, has an isochronous centre at the origin. We exhibit the exact and explicit general harmonic and isochronous solutions by using the first integral approach. The numerical results match very well analytical solutions.Mathematics Subject Classi cation (2010). 34A05, 34A12, 34A34, 34C25, 34C60.
This paper is devoted to investigating the existence of exact harmonic solutions and limit cycles of certain modified Emden-type equations. The exact and general solutions obtained are in opposition to the predictions of classic existence theorems.
In this paper we present a general class of differential equations of Ermakov-Pinney type which may serve as truly nonlinear oscillators. We show the existence of periodic solutions by exact integration after the phase plane analysis. The related quadratic Lienard type equations are examined to show for the first time that the Jacobi elliptic functions may be solution of second-order autonomous non-polynomial differential equations.
Authors introduce a generalized singular differential equation of quadratic Liénard type for study of exact classical and quantum mechanical solutions. The equation is shown to exhibit periodic solutions and to include the linear harmonic oscillator equation and the Painlevé-Gambier XVII equation as special cases. It is also shown that the equation may exhibit discrete eigenstates as quantum behavior under Nikiforov-Uvarov approach after several point transformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.