The hydrogen-bond-acceptor basicity of an important class of solvents, the amphiprotic solvents (water, alcohols, primary and secondary amides, and carboxylic acids), has not yet been properly parametrized. In this work, the first scale of solvent hydrogen-bond basicity applicable to amphiprotic solvents is established by means of a new method that compares the F NMR chemical shifts of 4-fluorophenol and 4-fluoroanisole in hydrogen-bond-acceptor solvents. This so-called solvatomagnetic comparison method is free of the shortcomings of the solvatochromic comparison method used so far and is easier to carry out than the pure base calorimetric method. The validity of the new scale is assessed by good linear correlations with spectroscopic, thermodynamic, and kinetic solute properties depending on the solvent hydrogen-bond basicity. In such correlation analysis of solvent effects on physicochemical properties, solvent and solute hydrogen-bond basicity scales must not be mixed, since it is shown here that solute and solvent scales are not equivalent. A comprehensive collection of parameters quantifying the hydrogen-bond basicity is presented for 168 solvents.
The development of an enantioselective sulfide oxidation involving a chiral iron catalyst and aqueous hydrogen peroxide as oxidant is described. In the presence of a simple carboxylic acid, or a carboxylate salt, the reaction affords sulfoxides with remarkable enantioselectivities (up to 96 % ee) in moderate to good yields. The influence of the structure of the additive on the reaction outcome is reported. In the sulfoxide-to-sulfone oxidation a kinetic resolution (with s = 4.8) occurs, which, however, plays only a negligible role in the overall enantioselective process. Furthermore, a positive nonlinear relationship between the ee of the product and that of the catalyst has been found. On the basis of these observations, a possible catalyst structure is proposed.
For several decades, enamines and related compounds have been used as intermediates in organic synthesis and many methods are known for their preparation. Most of the synthetic protocols, however, require harsh reaction conditions. Recently, a new approach has emerged, inspired by the analogous arylation of amines catalysed by palladium or copper complexes (Buchwald-Hartwig reaction). Simultaneous and independent work from several research groups has led to the development of very powerful protocols for the preparation of enamines and their derivatives that require only readily available starting materials and proceed under very mild reaction conditions. Noteworthy is the fact that in less than five years an almost unknown reaction has reached such a high level of scope and generality that it is now very frequently applied in total syntheses of natural products.
This short review presents the current main chemical warfare agents and their most relevant simulants, and the recent catalytic and selective methods for their soft neutralization, potentially usable in the future as an alternative to “heavy” methods for decontamination.
For about 300 solvents, we propose a database of new solvent parameters describing empirically solute/solvent interactions: DI for dispersion and induction, ES for electrostatic interactions between permanent multipoles, α1 for solute Lewis base/solvent Lewis acid interactions, and β1 for solute hydrogen-bond donor/solvent hydrogen-bond acceptor interactions. The main advantage over previous parametrizations is the easiness of extension of this database to newly designed solvents, since only three probes, the betaine dye 30, 4-fluorophenol, and 4-fluoroanisole are required. These parameters can be entered into the linear solvation energy relationship A = A0 + di(DI) + eES + aα1 + bβ1 to predict a large number of varied physicochemical properties A and to rationalize the multiple intermolecular forces at the origin of solvent effects through a simple examination of the sign and magnitude of regression coefficients di, e, a, and b. Such a rationalization is illustrated for conformational and tautomeric equilibria and is supported by quantum-mechanical calculations.
The reproducible crystallisation of elusive polymorphs and solvates of molecular compounds at high pressure has been demonstrated through studies on maleic acid, malonamide, and paracetamol. These high-pressure methods can be scaled-up to produce bulk quantities of metastable forms that can be recovered to ambient pressure for subsequent seeding experiments. This has been demonstrated for paracetamol form II and paracetamol monohydrate. The studies also show that the particular solid form can be tuned by both pressure and concentration
The aim of this review is to present the latest developments in the stereoselective synthesis of conjugated dienes, covering the period 2005-2010. Since the use of this class of compounds is linked to the nature of their appendages (aryls, alkyls, electron-withdrawing, and heterosubstituted groups), the review has been categorized accordingly and illustrates the most representative strategies and mechanisms to access these targets.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.