The in vitro interaction of amphotericin B in combination with colistin was evaluated against a total of 86 strains comprising of 47 Candida species (10 Candida albicans, 15 Candida auris, five Candida glabrata, three Candida kefyr, five Candida krusei, four Candida parapsilosis and five Candida tropicalis), 29 Aspergillus species (five Aspergillus flavus, 10 Aspergillus fumigatus, four Aspergillus nidulans, five Aspergillus niger, and five Aspergillus terreus), and 10 Rhizopus species (seven Rhizopus arrhizus, one Rhizopus delemar and two Rhizopus microsporus) strains. For the determination of the interaction, a microdilution checkerboard technique based on the European Committee on Antimicrobial Susceptibility Testing (EUCAST) reference method for antifungal susceptibility testing was used. Results of the checkerboard technique were evaluated by the fractional inhibitory concentration index (FICI) based on the Loewe additivity model for all isolates. Different inhibition endpoints were used to capture both the interaction at MIC and sub-MIC levels. Additionally, checkerboard technique results for Candida species were evaluated by response surface analysis based on the Bliss independence model. Against common Candida species, the combination was synergistic for 75% of the strains by FICI and for 66% of the strains by response surface analysis. For C. tropicalis, the interaction was antagonistic for three isolates by FICI, but antagonism was not confirmed by response surface analysis. Interestingly, synergistic and antagonistic FICIs were simultaneously present on checkboard microplates of all three strains. Against C. auris the combination was synergistic for 73% of the strains by response surface analysis and for 33% of the strains by FICI. This discrepancy could be related to the insensitivity of the FICI to detect weak interactions. Interaction for all other strains was indifferent. For Aspergillus and Rhizopus species combination exhibited only indifferent interactions against all tested strains.
Interactions of isavuconazole and colistin were evaluated against 57 common Candida strains belonging to the species Candida albicans (n = 10), Candida glabrata (n = 10), Candida kefyr (n = 8), Candida krusei (n = 10), Candida parapsilosis (n = 9), and Candida tropicalis (n = 10) by a broth microdilution checkerboard technique based on the European Committee on Antimicrobial Susceptibility Testing (EUCAST) reference methodology for antifungal susceptibility testing. Results were analyzed with the fractional inhibitory concentration index and by the response surface analysis. Interpretation by the fractional inhibitory concentration index showed synergy for 50%, 80%, 90%, and 90% of the C. kefyr, C. krusei, C. glabrata, and C. tropicalis strains, respectively. Combination of isavuconazole with colistin against C. albicans and C. parapsilosis exhibited only indifference for 100% and 90% of the strains, respectively. The results were confirmed by response surface analysis for all species except for C. glabrata, for which an indifferent interaction was found for the majority of strains. Antagonistic interaction was never seen regardless of the interpretation model was used.
In vitro interactions of broad-spectrum azole isavuconazole with flavonoid isoquercitrin were evaluated by a broth microdilution checkerboard technique based on the European Committee on Antimicrobial Susceptibility Testing (EUCAST) reference methodology for antifungal susceptibility testing against 60 Candida strains belonging to the species Candida albicans (n = 10), Candida glabrata (n = 30), Candida kefyr (n = 6), Candida krusei (n = 5), Candida parapsilosis (n = 4), and Candida tropicalis (n = 5). The results were analyzed with the fractional inhibitory concentration index and by response surface analysis based on the Bliss model. Synergy was found for all C. glabrata strains, when the results were interpreted by the fractional inhibitory concentration index, and for 60% of the strains when response surface analysis was used. Interaction for all other species was indifferent for all strains tested, whatever interpretation model used. Importantly, antagonistic interaction was never observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.