The use of peloids as heat-providing therapeutic systems dates back to antiquity. Such systems consist of a liquid phase and an organic or inorganic solid phase. The latter facilitates the handling, preparation and stability of the solid–liquid system, modifying its organoleptic and phy-sicochemical properties, and improves its efficacy and tolerance. Peloids enable the application of heat to very specific zones and the release of heat at a given rate. The aims of this work are to study 16 reference peloids used in medical spa centers as thermo-therapeutic agents as well as to propose nine raw materials as a solid phase for the preparation of peloids. The physical properties studied are the centesimal composition, the instrumental texture and the thermal parameters. In conclusion, the peloids of the medical spas studied are used as thermotherapeutic agents in the treatment of musculoskeletal disorders, especially in knee osteoarthritis and to a lesser extent in back pain and psoriatic arthropathy. The clinical experience in these centers shows that the main effects of the application of their peloids are the reduction of pain, an increase in the joint’s functional capacity and an improvement in the quality of life. As thermotherapeutic agents, all the peloids of the me-dical spas studied and the pastes (raw materials with distilled water) examined showed a heat flow rate of up to four times lower than that shown by the same amount of water. The raw materials studied can be used as solid phases for the preparation of peloids with mineral waters.
A peloid’s liquid phase can be mineral, sea or salt-lake water. This study examines the interactions among three materials, two special clays (bentonite and sepiolite) and one common clay, and three chemically different mineral-medicinal waters. In all clay–water mixtures, the hardness and adhesiveness decreased with the amount of water in the mixture. For a given hardness or adhesiveness, sepiolite retained more water than the other clays, especially in the presence of sulphate-rich mineral-medicinal water (73%). In contrast, the common clay retained the least amount of water (26%), and the bentonite samples returned an intermediate value for the amount of retained water (52–53%). These differences had a strong influence on the thermal behaviour of the mixtures and, hence, should be taken into account for their use in thermotherapy applications. There were no significant differences in the instrumental texture of the clay pastes according to the predominant anion in the mineral-medicinal waters.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.