Electron beams with helical wavefronts carrying orbital angular momentum are expected to provide new capabilities for electron microscopy and other applications. We used nanofabricated diffraction holograms in an electron microscope to produce multiple electron vortex beams with well-defined topological charge. Beams carrying quantized amounts of orbital angular momentum (up to 100ħ) per electron were observed. We describe how the electrons can exhibit such orbital motion in free space in the absence of any confining potential or external field, and discuss how these beams can be applied to improved electron microscopy of magnetic and biological specimens.
Sudden unexpected deaths have been reported with antipsychotic use since the early 1960s. In some cases the antipsychotic may be unrelated to death, but in others it appears to be a causal factor. Antipsychotics can cause sudden death by several mechanisms, but particular interest has centred on torsade de pointes (TdP), a polymorphic ventricular arrhythmia that can progress to ventricular fibrillation and sudden death. The QTc interval is a heart rate-corrected value that represents the time between the onset of electrical depolarisation of the ventricles and the end of repolarisation. Prolongation of the QTc interval is a surrogate marker for the ability of a drug to cause TdP. In individual patients an absolute QTc interval of >500 msec or an increase of 60 msec from baseline is regarded as indicating an increased risk of TdP. However, TdP can occur with lower QTc values or changes. Concern about a relationship between QTc prolongation, TdP and sudden death applies to a wide range of drugs and has led to the withdrawal or restricted labelling of several. Among antipsychotics available in the UK, sertindole was voluntarily suspended, droperidol was withdrawn, and restricted labelling introduced for thioridazine and pimozide. The degree of QTc prolongation is dose dependent and varies between antipsychotics reflecting their different capacity to block cardiac ion channels. Significant prolongation is not a class effect. Among currently available agents, thioridazine and ziprasidone are associated with the greatest QTc prolongation. Virtually all drugs known to cause TdP block the rapidly activating component of the delayed rectifier potassium current (I(kr)). Arrhythmias are more likely to occur if drug-induced QTc prolongation coexists with other risk factors, such as individual susceptibility, presence of congenital long QT syndromes, heart failure, bradycardia, electrolyte imbalance, overdose of a QTc prolonging drug, female sex, restraint, old age, hepatic or renal impairment, and slow metaboliser status. Pharmacodynamic and pharmacokinetic interactions can also increase the risk of arrhythmias. Further research is needed to quantify the risk of sudden death with antipsychotics. The risk should be viewed in the context of the overall risks and benefits of antipsychotic treatment. It seems prudent, where possible, to select antipsychotics that are not associated with marked QTc prolongation. If use of a QTc-prolonging drug is warranted, then measures to reduce the risk should be adopted.
We use the theory of reduction of exterior differential systems with symmetry to study the problem of using a symmetry group of a differential equation to find noninvariant solutions. (2000): 58A15, 34A26. Mathematics Subject Classifications
The ability of electron microscopes to analyze all the atoms in individual nanostructures is limited by lens aberrations. However, recent advances in aberration-correcting electron optics have led to greatly enhanced instrument performance and new techniques of electron microscopy. The development of an ultrastable electron microscope with aberration-correcting optics and a monochromated high-brightness source has significantly improved instrument resolution and contrast. In the present work, we report information transfer beyond 50 pm and show images of single gold atoms with a signal-to-noise ratio as large as 10. The instrument's new capabilities were exploited to detect a buried Sigma3 {112} grain boundary and observe the dynamic arrangements of single atoms and atom pairs with sub-angstrom resolution. These results mark an important step toward meeting the challenge of determining the three-dimensional atomic-scale structure of nanomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.