This paper proposes the modeling and design of a controller for an inductive power transfer (IPT) system with a semi-bridgeless active rectifier (S-BAR). This system consists of a double-sided Inductor-Capacitor-Capacitor (LCC) compensation network and an S-BAR, and maintains a constant output voltage under load variation through the operation of the rectifier switches. Accurate modeling is essential to design a controller with good performance. However, most of the researches on S-BAR have focused on the control scheme for the rectifier switches and steady-state analysis. Therefore, modeling based on the extended describing function is proposed for an accurate dynamic analysis of an IPT system with an S-BAR. Detailed mathematical analyses of the large-signal model, steady-state operating solution, and small-signal model are provided. Nonlinear large-signal equivalent circuit and linearized small-signal equivalent circuit are presented for intuitive understanding. In addition, worst case condition is selected under various load conditions and a controller design process is provided. To demonstrate the effectiveness of the proposed modeling, experimental results using a 100 W prototype are presented.
To achieve high efficiency and power density, silicon carbide (SiC)-based Inductor-Inductor-Capacitor (LLC) resonant converters are applied to the DC/DC converter stage of a solid-state transformer (SST). However, because the input voltage of an SST is higher than the rated voltage of a commercial SiC device, it is essential to connect SiC devices in series. This structure is advantageous in terms of voltage rating, but a parasitic capacitance tolerance between series-connected SiC devices causes voltage imbalance. Such imbalance greatly reduces system stability as it causes overvoltage breakdown of SiC device. Therefore, this paper proposes a switching scheme to solve the voltage imbalance between SiC metal-oxide-semiconductor field-effect transistors (MOSFETs). The proposed scheme sequentially turns off series-connected SiC MOSFETs to compensate for the turn-off delays caused by parasitic capacitor tolerances. In addition, dead-time selection methods to achieve voltage balance and zero voltage switching simultaneously are provided in detail. To verify the effectiveness of the proposed scheme, experiments were conducted on a 2 kW series-connected SiC MOSFET LLC resonant converter prototype.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.