Swimming microrobots that are energized by external magnetic fields exhibit a variety of intriguing collective behaviors, ranging from dynamic self-organization to coherent motion; however, achieving multiple, desired collective modes within one colloidal system to emulate high environmental adaptability and enhanced tasking capabilities of natural swarms is challenging. Here, we present a strategy that uses alternating magnetic fields to program hematite colloidal particles into liquid, chain, vortex, and ribbon-like microrobotic swarms and enables fast and reversible transformations between them. The chain is characterized by passing through confined narrow channels, and the herring school–like ribbon procession is capable of large-area synchronized manipulation, whereas the colony-like vortex can aggregate at a high density toward coordinated handling of heavy loads. Using the developed discrete particle simulation methods, we investigated generation mechanisms of these four swarms, as well as the “tank-treading” motion of the chain and vortex merging. In addition, the swarms can be programmed to steer in any direction with excellent maneuverability, and the vortex’s chirality can be rapidly switched with high pattern stability. This reconfigurable microrobot swarm can provide versatile collective modes to address environmental variations or multitasking requirements; it has potential to investigate fundamentals in living systems and to serve as a functional bio-microrobot system for biomedicine.
The T-1000 liquid metal terminator, which can transform and self-repair, represents a dream for decades that robots can fundamentally change our daily life. Until now, some large-scale liquid metal machines have been developed. However, there is no report on nanoscaled liquid metal machines and their biomedical applications. We describe here a shape-transformable and fusible rodlike swimming liquid metal nanomachine, based on the biocompatible and transformable liquid metal gallium. These nanomachines were prepared by a pressure-filter-template technology, and the diameter and length could be controlled by adjusting the nanoporous templates, filter time, and pressure. The as-prepared liquid gallium nanomotors display a core-shell nanorod structure composed of a liquid gallium core and solid gallium oxide shell. Upon exposure to an ultrasound field, the generated acoustic radiation force in the levitation plane can propel them to move autonomously. The liquid metal nanomachine can actively seek cancer cells and transform from a rod to a droplet after drilling into cells owing to the removal of gallium oxide layers in the acidic endosomes. These transformed nanomachines could fuse together inside cells and photothermally kill cancer cells under illumination of near-infrared light. Such acoustically propelled shape-transformable rodlike liquid metal nanomachines have great potential for biomedical applications.
Swimming biohybrid microsized robots (e.g., bacteria- or sperm-driven microrobots) with self-propelling and navigating capabilities have become an exciting field of research, thanks to their controllable locomotion in hard-to-reach areas of the body for noninvasive drug delivery and treatment. However, current cell-based microrobots are susceptible to immune attack and clearance upon entering the body. Here, we report a neutrophil-based microrobot (“neutrobot”) that can actively deliver cargo to malignant glioma in vivo. The neutrobots are constructed through the phagocytosis of Escherichia coli membrane-enveloped, drug-loaded magnetic nanogels by natural neutrophils, where the E. coli membrane camouflaging enhances the efficiency of phagocytosis and also prevents drug leakage inside the neutrophils. With controllable intravascular movement upon exposure to a rotating magnetic field, the neutrobots could autonomously aggregate in the brain and subsequently cross the blood-brain barrier through the positive chemotactic motion of neutrobots along the gradient of inflammatory factors. The use of such dual-responsive neutrobots for targeted drug delivery substantially inhibits the proliferation of tumor cells compared with traditional drug injection. Inheriting the biological characteristics and functions of natural neutrophils that current artificial microrobots cannot match, the neutrobots developed in this study provide a promising pathway to precision biomedicine in the future.
We report a magnetically actuated peanut-shaped hematite colloid motor that can not only move in a rolling or wobbling mode in fluids but also perform single cell manipulation and patterning in a noncontact way. The peanut motor in a rolling mode can reach a maximal velocity of 10.6 μm s under a rotating magnetic field of 130 Hz and 6.3 mT and achieve a more precisely controllable motion in predefined tracks. While in a wobbling mode, the motor reaches a maximal velocity of 14.5 μm s under a conical rotating magnetic field of 80 Hz and 6.3 mT and can climb over steep slopes to adapt the motor for more complex environments. The fluid flow simulation results reveal that the difference between two movement modes mostly comes from the distribution discrepancy of the flow fields near the motors. Through the integration of the rolling and wobbling movement, these peanut motors can autonomously transport and release cells to a predefined site and thus form complex cell patterns without a physical contact. Such magnetically actuated peanut colloid motors afford a biofriendly technique for manipulation and patterning of cells, cell measurements, and intracellular communication investigations.
Magnetically actuated miniature soft robots are capable of programmable deformations for multimodal locomotion and manipulation functions, potentially enabling direct access to currently unreachable or difficult-to-access regions inside the human body for minimally invasive medical operations. However, magnetic miniature soft robots are so far mostly based on elastomers, where their limited deformability prevents them from navigating inside clustered and very constrained environments, such as squeezing through narrow crevices much smaller than the robot size. Moreover, their functionalities are currently restricted by their predesigned shapes, which is challenging to be reconfigured in situ in enclosed spaces. Here, we report a method to actuate and control ferrofluid droplets as shape-programmable magnetic miniature soft robots, which can navigate in two dimensions through narrow channels much smaller than their sizes thanks to their liquid properties. By controlling the external magnetic fields spatiotemporally, these droplet robots can also be reconfigured to exhibit multiple functionalities, including on-demand splitting and merging for delivering liquid cargos and morphing into different shapes for efficient and versatile manipulation of delicate objects. In addition, a single-droplet robot can be controlled to split into multiple subdroplets and complete cooperative tasks, such as working as a programmable fluidic-mixing device for addressable and sequential mixing of different liquids. Due to their extreme deformability, in situ reconfigurability and cooperative behavior, the proposed ferrofluid droplet robots could open up a wide range of unprecedented functionalities for lab/organ-on-a-chip, fluidics, bioengineering, and medical device applications.
Photodynamic therapy (PDT) is a promising cancer therapeutic strategy, which typically kills cancer cells through converting nontoxic oxygen into reactive oxygen species using photosensitizers (PSs). However, the existing PDTs are still limited by the tumor hypoxia and poor targeted accumulation of PSs. To address these challenges, we here report an acoustically powered and magnetically navigated red blood cell-mimicking (RBCM) micromotor capable of actively transporting oxygen and PS for enhanced PDT. The RBCM micromotors consist of biconcave RBC-shaped magnetic hemoglobin cores encapsulating PSs and natural RBC membrane shells. Upon exposure to an acoustic field, they are able to move in biological media at a speed of up to 56.5 μm s–1 (28.2 body lengths s–1). The direction of these RBCM micromotors can be navigated using an external magnetic field. Moreover, RBCM micromotors can not only avoid the serum fouling during the movement toward the targeted cancer cells but also possess considerable oxygen- and PS-carrying capacity. Such fuel-free RBCM micromotors provide a new approach for efficient and rapid active delivery of oxygen and PSs in a biofriendly manner for future PDT.
On the basis of geophysical observations, cosmochemical constraints, and high-pressure experimental data, the Earth's liquid outer core consists of mainly liquid iron alloyed with about ten per cent (by weight) of light elements. Although the concentrations of the light elements are small, they nevertheless affect the Earth's core: its rate of cooling, the growth of the inner core, the dynamics of core convection, and the evolution of the geodynamo. Several light elements-including sulphur, oxygen, silicon, carbon and hydrogen-have been suggested, but the precise identity of the light elements in the Earth's core is still unclear. Oxygen has been proposed as a major light element in the core on the basis of cosmochemical arguments and chemical reactions during accretion. Its presence in the core has direct implications for Earth accretion conditions of oxidation state, pressure and temperature. Here we report new shockwave data in the Fe-S-O system that are directly applicable to the outer core. The data include both density and sound velocity measurements, which we compare with the observed density and velocity profiles of the liquid outer core. The results show that we can rule out oxygen as a major light element in the liquid outer core because adding oxygen into liquid iron would not reproduce simultaneously the observed density and sound velocity profiles of the outer core. An oxygen-depleted core would imply a more reduced environment during early Earth accretion.
An intrinsic plastic Cu(45)Zr(46)Al(7)Ti(2) bulk metallic glass (BMG) with high strength and superior compressive plastic strain of up to 32.5% was successfully fabricated by copper mold casting. The superior compressive plastic strain was attributed to a large amount of randomly distributed free volume induced by Ti minor alloying, which results in extensive shear band formation, branching, interaction and self-healing of minor cracks. The mechanism of plasticity presented here suggests that the creation of a large amount of free volume in BMGs by minor alloying or other methods might be a promising new way to enhance the plasticity of BMGs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.