Background: In recent years, some studies were conducted to evaluate the effects of stem cells from different sources on patients with spinal cord injury (SCI). This study was carried out to evaluate the feasibility and therapeutic potential of autologous bone marrow cell (BMC) transplantation in 11 complete spinal cord injured patients at thoracic level. Methods and materials: This nonrandomized clinical trial compared the results of autologous BMC transplantation into cerebrospinal fluid (CSF) via lumbar puncture (LP) in 11 patients having complete SCI, with 20 patients as control group who received conventional treatment without BMC transplantation. The patients underwent preoperative and follow-up neurological assessments using the American Spinal Injury Association (ASIA) impairment scale. Then, the participants were followed for 12-33 months. Results: Eleven patients with the mean age of 33.2 ± 8.9 years and 20 patients with the mean age of 33.5 ± 7.2 years were enrolled in the study and in the control group, respectively. None of the patients in the study and control group experienced any adverse reaction and complications, neither after routine treatment nor after cell transplantation. Five patients out of 11 (45.5%) in the study group and three patients in the control group (15%) showed marked recovery, but the result was statistically borderline (P = 0.095). Conclusion: We conclude that transplantation of autologous BMC via LP is a feasible and safe technique, but at the moment, no clear answer can be given regarding the clinical potential, despite a potential tendency to treat SCI patients, observed through statistics.
Disc nucleus pulposus microscopic calcification is a common event occurring in adult patients suffering from lumbar disc herniation. Mechanisms that link disc degeneration, angiogenesis, and calcification remain a focus for further researches that may be useful in future medical treatments before surgical treatment of lumbar disc herniation.
The impact of extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) at various frequencies and amplitudes was investigated on cell cycle, apoptosis and viability of the Glioblastoma Multiforme (GBM) cell line (U87), in vitro. The GBM is a malignant brain tumor with high mortality in humans and poorly responsive to the most common type of cancer treatments, such as surgery, chemotherapy and radiation therapy. U87 cells with five experimental groups (I-V) were exposed to various ELF-PEMFs for 2, 4 and 24 h, as follows: (I) no exposure, control; (II) 50 Hz 100 ± 15 G; (III) 100 Hz 100 ± 15 G; (IV) 10 Hz 50 ± 10 G; (V) 50 Hz 50 ± 10 G. The morphology properties, cell viability and gene expression of proteins involved in cell cycle regulation (Cyclin-D1 and P53) and apoptosis (Caspase-3) were investigated. After 24 h, the cell viability and Cyclin-D1 expression increased in Group II (30%, 45%), whereas they decreased in Groups III (29%, 31%) and IV (21%, 34%); P53 and Caspase-3 elevated only in Group III; and no significant difference was observed in Group V, respectively, compared with the control (p < 0.05). The data suggest that the proliferation and apoptosis of human GBM are influenced by exposure to ELF-PEMFs in different time-dependent frequencies and amplitudes. The fact that some of the ELF-PEMFs frequencies and amplitudes favor U87 cells proliferation indicates precaution for the use of medical devices related to the MFs on cancer patients. On the other hand, some other ELF-PEMFs frequencies and intensities arresting U87 cells growth could open the way to develop novel therapeutic approaches.
With CT scans as an accurate and suitable source of anthropometric evaluation of body dimensions, we found that, in our population, the most frequent skull type is dolichocephalic followed by mesocephalic, which seems to be closer to the Anglo-Saxon population considering the rates of dolichocephaly and mesocephaly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.